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Preliminaries

The simplest example

σ̇ = α+u = α−sign(σ), σ(0) = 1

with α ∈ (−1, 1).

σ > 0⇒ σ̇ =< 0

σ < 0⇒ σ̇ => 0

and σ(t) ≡ 0,∀t ≥ T .

Remark

0 = α− sign(0)?

The right-hand side is
discontinuous.

After arriving to σ = 0,
sliding along σ ≡ 0.

Finite-time convergence.

Differential inclusion.

σ̇ ∈ [−α, α]− sign(σ)
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Preliminaries

Mechanical system
A generic mechanic system ẋ1 = x2

ẋ2 = u + f (t, x)
σ = x2

with σ as output and select

u = −sign(σ)= dry friction

x1 : position.
x2 : velocity.
σ : measurement
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Preliminaries

Summary: Late 50 th

Certainly we stopped, but where?

No control over x1 (position)

Can we manipulate both x1 and x2 at the same time?

Definition of solution on the discontinuity surface is needed

High frequency discontinuous (switching) control

Chattering
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Generation 2: Second Order Sliding Modes

Chattering as the relative degree problem

Figure: Prof. Levant and Prof. Fridman
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Generation 2: Second Order Sliding Modes

Second Order Sliding Modes


ẋ1 = x2

ẋ2 = u + f (x , t)

σ = x1

f (x , t) unknown uncertainties/perturbations.

All the partial derivatives of f (x , t) are bounded on
compacts

Figure: Prof.
Emelyanov,Prof. Korovin
and Prof. Levant.

Main Objective

To design a control u such that the origin of system is finite-time stable, in
spite of the uncertainties/perturbations f (x , t), with |f (x , t)| < f + for all t, x
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Generation 2: Second Order Sliding Modes

Twisting algorithm

u = −a sign(x2)− b sign(x1), b > a + f +, a > f +.

Known bounds f +

a and b chosen appropriately
(Emelyanov et al. 86),

Ensures finite-time exact convergence
for both x1 and x2
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Generation 4:Arbitrary Order Sliding Mode Controllers

Arbitrary Order Sliding Mode Controllers

Ẋ = F (t,X ) + G (t,X )u,X ∈ Rn, u ∈ R
σ = σ(X , t),∈ R.

σ has a fixed and known relative degree r .

Control problem is transformed into the finite-time stabilization of an uncertain
differential equation

σ(r) = f (t,X ) + g(t,X )u, (1)

and corresponding differential inclusion

σ(r) ∈ [−C ,C ] + [Km,KM ]u, (2)

where C ,Km and KM are known constants.
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Generation 4:Arbitrary Order Sliding Mode Controllers

Nested arbitrary order sliding-mode con-
trollers

2001: Nested arbitrary order SM
controller

Solve the finite-time exact stabilization
problem for an output with an arbitrary
relative degree.

Bounded Lebesgue measurable
uncertainties.

”Nested” higher order
sliding-mode(HOSM) controllers are
constructed using a recursion

Figure: Prof. Levant
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Generation 4:Arbitrary Order Sliding Mode Controllers

Nested Third Order Singular Terminal Algo-
rithm

Third Order

u = −α sign
(
σ̈ + 2(|σ̇|3 + |σ|2)

1
6×

sign(σ̇ + |σ|
2
3 sign(σ))

)
Figure: 3rd Order Nested SM

Fourth Order

u = −α sign
(...
σ + 3(σ̈6 + σ̇4 + σ3)

1
12×

sign
(
σ̈ + (σ̇4 + |σ|3)

1
6 sign(σ̇ + 0.5|σ|

3
4 sign(σ))

))
Finite-time stabilization of σ = 0 and its successive derivatives up to r − 1.
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Generation 4:Arbitrary Order Sliding Mode Controllers

HOSM Differentiator

The Nested Controller needs the output and its successive derivatives

Instrument: HOSM arbitrary order differentiator

Let σ(t) signal to be differentiated k − 1 times

Assume that |σ(k)| ≤ L.

2-th order HOSM differentiator

ż0 = v0 = −3L
1
4 |z0 − σ|

3
4 sign(z0 − σ) + z1,

ż1 = v1 = −2L
1
3 |z1 − v0|

2
3 sign(z1 − v0) + z2,

ż2 = v2 = −1.5L
1
2 |z2 − v1|

1
2 sign(z2 − v1) + z3

ż3 = −1.1L sign(z3 − v2)

(3)

zi true derivative σ(i)(t).
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Generation 4:Arbitrary Order Sliding Mode Controllers

Discussion about HOSM

Advantages

Ensures σ = σ̇ = σ̈ = · · · = σ(r−1) = 0 in finite time.

Exact disturbance compensation for SISO systems with relative degree r .

Ensures the r-th order precision for the sliding output with respect to the
discretization step and fast parasitic dynamics.

The sliding surface design is no longer needed.

Disadvantages

Still produces a discontinuous control signal.

Anti-chattering strategy: Reconstruction of the perturbation is needed (σ(r))
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Generation 4:Arbitrary Order Sliding Mode Controllers

Implementation of HOSM

Figure: The implementation of the output-feedback HOSM controller
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Glucose Insulin Regulatory System

Non linear system.

Time variable.

Large inter-patient variability.

Parameter identification is expensive and invasive for the patient.
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High-Order Sliding-Mode Control

HOSMC can be design as a black-box control where only the relative
degree of the system has to be known.

High-Order Sliding Mode Control is insensitive with respect to
parameter uncertainties.

Relative Degree

The relative degree r is defined as the order of the total time derivative
of σ where the input variable u explicitly appears for the first time.

σ(r) = h(t, x) + g(t, x)u (1)

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 6 / 36



High-Order Sliding-Mode Control

HOSMC can be design as a black-box control where only the relative
degree of the system has to be known.

High-Order Sliding Mode Control is insensitive with respect to
parameter uncertainties.

Relative Degree

The relative degree r is defined as the order of the total time derivative
of σ where the input variable u explicitly appears for the first time.

σ(r) = h(t, x) + g(t, x)u (1)

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 6 / 36



Bergman Minimal Model (BeM)

BeM a

aBergman et al., 1979

Ḃ1 = −p1[B1 −Gb]−B1B2 + Ḋ(t)

Ḃ2 = −p2B2 + p3[B3 − Ib]
Ḃ3 = −n[B3 − Ib] + γ[B1 − h]+u(t)

Table: Variables

Variable Description

B1 Blood glucose concentration (Output)
B2 Effect of insulin on glucose uptake
B3 Blood insulin concentration
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Ḃ2 = −p2B2 + p3[B3 − Ib]
Ḃ3 = −n[B3 − Ib] + γ[B1 − h]+u(t)

Table: Variables

Variable Description

B1 Blood glucose concentration (Output)
B2 Effect of insulin on glucose uptake
B3 Blood insulin concentration

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 7 / 36



Sorensen Model (SoM)1

Ṡ1 =
1

V G
H

(−QG
HS1 +QG

LS2 + S7 − FRBGU )

Ṡ2 =
2

V G
L

(QG
AS1 +QG

GS6 −QG
LS2 + fHGPS8 − fHGUS3)

Ṡ3 =
1

τ1
(2 tanh(0.55SN

4 )− S3)

Ṡ4 =
2

V I
L

(QI
AS5 +QI

GS10 −QI
LS4 − FLIC)

Ṡ5 =
1

V I
H

(QI
LS4 −QI

HS5 + S9 + u(t))

Ṡ6 =
QG

G

V G
G

(S1 − S6) +
1

V G
G

(FMEAL −RGGU )

Ṡ7 = QG
KĠK +GG

P ĠPV +QG
BĠBV

Ṡ8 =
1

τ1
(1.21− 1.14 tanh[1.66(SN

4 − 0.89)]− S8)

Ṡ9 = QI
B İB +QI

K İK +QI
P İPV

Ṡ10 =
QI

G

V I
G

(S5 − S10)

Ṡ11 =
1

VC
(FPCR − FMCCS

N
11)
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Ṡ5 =
1

V I
H

(QI
LS4 −QI

HS5 + S9 + u(t))
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Ṡ11 =
1

VC
(FPCR − FMCCS

N
11)

1Sorensen, 1985(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 8 / 36



Sorensen Model (SoM)1
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K İK +QI
P İPV
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Ṡ11 =
1

VC
(FPCR − FMCCS

N
11)

1Sorensen, 1985(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 8 / 36



Glucose Regulation Models

Model RD No. States

Bergman 3 3
Candas-Radziuk 3 4

Cobelli 3 7
Hovorka 5 8

Dalla Man 5 8
Sorensen 5 18

Output: blood glucose

Input: insulin
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Diabetic Patient

The same patient can be modeled
by any model.
Levant and Fridman TAC 2010:
HOSMC are robust with respect
to relative degree fluctuations.
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Consider the system

ẋ = a(t, x) + b(t, x)v, σ = σ(t, x) (2)

where x ∈ Rn, v ∈ R is the input, a, b and σ : Rn+1 → R are unknown
smooth functions, n can be also uncertain. The output σ is measured
in real time.

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 11 / 36



Assumption 1

Smooth uncertain functions a, b and σ are defined in some open region
Ω ⊂ Rn+1. It is supposed that provided the input v is a
Lebesgue-measurable function of time, |V | ≤ vM , all solutions starting
from an open region Ωx ⊂ Rn at t ∈ ta can be extended in time up to
t = tb > ta without leaving the region Ω.

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 12 / 36



Assumption 2

The relative degree rp of the system is assumed to be constant and
known. It means that for the first time the input variable v appears
explicitly in the rpth total time derivative of σ. It can be checked that

σ(rp) = h(t, x) + g(t, x)v (3)

where h(t, x) = σ(rp)|v=0, g(t, x) = ∂
∂vσ

(rp) are some unknown smooth
functions, which can be expressed in the terms of Lie derivatives. The
set Ωx is supposed to contain rp−sliding points at the time t = ta.
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Assumption 3

It is supposed that

0 < Km ≤
∂

∂v
σ(rp) ≤ KM , |σ(rp)|v=0| ≤ C (4)

hold in Ω for some Km, KM , C > 0. Conditions (4) are formulated in
terms of input-output relations.

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 14 / 36



Assumption 3

Let the unaccounted-for dynamics is described by the equations

µż = f(z, u), v = v(z) (5)

where z ∈ Rm, u ∈ R is the control and the input of the
unaccounted-for dynamics, output v(z) is continuous and f(z, u) is a
locally bounded Borel-measurable function, the time constant µ > 0 is
a small parameter. All differential equations are understood in the
Filippov sense.

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 15 / 36



Assumption 3

The control u is determined by a feedback

u = U(σ, σ̇, . . . , σ(r−1)) (6)

where U is a function continuous almost everywhere, and bounded by
some constant uM , uM > 0, in its absolute value. Being applied
directly to ẋ, i.e. with

v = u, (7)

it is supposed to locally establish the rp−sliding mode σ ≡ 0.

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 16 / 36



Assumption 4

Initial values of z belong to some compact region Ωz0. The
unaccounted-for dynamics is assumed to be
Bounded-Input-Bounded-State (BIBS), with µ = 1. Since |u| ≤ uM ,
this provides for the infinite extension in time of any solution of u and
for z belonging to another compact region Ωz independent of µ.
Indeed, µ can be excluded by the time transformation τ = t/µ. This
assumption causes also the “internal” output v to be bounded in its
absolute value by some constant vM > uM > 0.
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Assumption 5

The dynamic output feedback u is supposed to be rp−sliding
homogeneous, which means that the identity

U(σ, σ̇, . . . , σ(rp−1)) ≡ U(κrpσ, κ(rp−1)σ̇, . . . , κσ(rp−1)) (8)

is kept for any κ > 0. It is also assumed that the control function U is
locally Lipschitz everywhere except a finite number of smooth
manifolds comprising a closed set Γ in the space with coordinates
Σ = (σ, σ̇, . . . , σ(rp−1)). Note that, due to the homogeneity property
(8), the set Γ contains the origin Σ = 0, where the function U is
inevitably discontinuous.
Quasi Continuous HOSMC satisfies Assumption 5. As follows from
σ(rp),

σ(rp) ∈ [−C,C] + [Km,KM ]v. (9)
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Assumption 6

It is assumed that with control u applied directly to inclusion
σ(rp) ∈ [−C,C] + [Km,KM ]v, a finite-time stable inclusion, u, v, σ(rp)

is created. Note that the right-hand sides of the differential inclusions
are enlarged at the points of the control discontinuity according to the
Filippov procedure.
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Assumption 7

The unaccounted-for dynamics are assumed exact in the following
sense. With µ = 1 and any constant value of u the output v uniformly
tends to u. That means that for any δ > 0 there exists T > 0 such that
with any u, u = const, |u| ≤ uM , z(0) ∈ Ωz, the inequality |v − u| ≤ δ
is kept after the transient time T. It is required also that the function
f(z, u) in v be uniformly continuous in u, which means that
||f(z, u)− f(z, u+4u)|| tends to 0 with 4u→ 0 uniformly in z ∈ Ωz,
|u| ≤ uM .

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 20 / 36



Assumption 8

It is supposed that the change of u in v = u at the set Γ to

v ∈
{

U(Σ), Σ /∈ Γ
[−VM , VM ], Σ ∈ Γ

(10)

does not destroy the finite-time convergence.
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Theorem

Let assumptions 1-8 hold. Then there exist a vicinity Q of the
rp−sliding set in Ωx at t = ta, a time moment t1 ∈ (ta, tb), and
a0, a1, . . . , ar−1 > 0, such that with sufficiently small µ > 0 for any
trajectory of u, v, u starting within Q at t = ta the inequalities
|σ| < a0µ

r
p, |σ̇| < a1µ

rp−1, . . . , |σ(rp−1)| < arp−1µ are kept within t ≥ t1.

(UNAM-CMNS21) Practical Relative Degree CDC-ECC 2011 22 / 36



Practical Relative Degree rp

Definition

The number of derivatives for which the influence of the input is
evident.
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Practical Relative Degree Identification

STEP TEST

σ(rp) = h(t, x) + g(t, x)uH

uH = H(x− tH)
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Practical Relative Degree

Identification Method

σ(rp) = h(t, x) + g(t, x)H(x− tH)

Conditions

The practical relative degree is identified when the rp-th derivative of
the output:

if a discontinuity is observed in σ(rp) at t = tH .

if a change of slope is seen in σ(rp−1) at t = tH In the scale of the
system.
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BeM Practical Relative Degree

Figure: BeM output (glucose) and its derivatives
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SoM Practical Relative Degree

Figure: SoM output (glucose) and its derivatives
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Quasi-Continuous HOSM (QC-HOSMC)

Third Order QC-HOSMC

u = −α [σ̈ + β2(|σ̇|+ β1|σ|2/3)1/2(σ̇ + β1|σ|2/3signσ)]

[|σ̈|+ β2(|σ̇|+ β1|σ|2/3)1/2]
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QC-HOSMC Simulation for BeM

Figure: Glucose concentration for BeM. The simulation represents a
postprandial event controlled by a third order QC-HOSMC. No hypoglycemia
is observed, and normoglycemia is reached in an acceptable time (100 min).
The gains of the controller are the same for the 3 patients.
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QC-HOSMC Simulation for SoM2

Figure: Glucose concentration for SoM. The simulation represents a
postprandial event controlled by a third order QC-HOSMC. No hypoglycemia
is observed, and normoglycemia is reached in an acceptable time. The
controller is the same as for BeM.

2Levant TAC 2005
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Conclusions

The practical relative degree concept is useful to determinate
the order of the HOSMC, for systems where it is not easy to
determinate from the analysis of the models.

HOSMC is suitable to control glucose-insulin regulation system
due to it is robust with respect to parametric and relative degree
uncertainties.
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Experimental Set
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Experiment Ra1
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Experiment Ra2
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Experiment Ra3
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Practical Relative Degree:

Frequency Domain Approach

A
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Problem Statement

Problem Statement

Given

A SISO system
{

ẋ = F (x) + g(x)u
σ = h(x)

(1)

where x ∈ Rn, σ ∈ R1, F (x), g(x) ∈ Rn are Lipschitz vector fields, and h(x) ∈ R is a
smooth enough function.

A sliding mode controller (SMC) u

In real systems the unmodeled dynamics have fractal structure [Boiko, JFI2014],

Relative degree of output is every time infinite.

Chattering appears [Shtessel, et al. 96],[Boiko, et al. 05].
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Problem Statement

Problem Statement

Given

A SISO system
{

ẋ = F (x) + g(x)u
σ = h(x)

(1)

where x ∈ Rn, σ ∈ R1, F (x), g(x) ∈ Rn are Lipschitz vector fields, and h(x) ∈ R is a
smooth enough function.

A sliding mode controller (SMC) u

Sliding set will converge to a real sliding mode, where the sliding variable σ can

exhibit self-sustained oscillation with the finite frequency 0 < ω < ∞ and the finite
amplitude A > 0.
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Problem Statement

Problem Statement

Given

A SISO system
{

ẋ = F (x) + g(x)u
σ = h(x)

(1)

where x ∈ Rn, σ ∈ R1, F (x), g(x) ∈ Rn are Lipschitz vector fields, and h(x) ∈ R is a
smooth enough function.

A sliding mode controller (SMC) u

The following notions play an important role

Tolerance Limits

Practical Relative Degree (PRD), [Levant 2013], [Hernandez, et al. CEP2013]

L. Fridman (UNAM) PM and PRD in SMC systems January, 2015 5 / 23



Problem Statement

Tolerance Limits

The frequency ωc and amplitude Ac are the tolerance limits of the acceptable limit cycle
of the output y , so that self-sustained oscillations of the output y with the amplitudes
A ≤ Ac and the frequencies ω ≥ ωc yield the acceptable performance of the closed loop
system in the real sliding mode [Utkin 09]
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Problem Statement

Two approaches to PRD notion will be discussed

Based on Tolerant Limits

If the model of the system is unknown the PRD of the system is the smallest order of SM
controller generating the oscillations in the system satisfying the level of tolerance.

Based on Performance Margins

The performance phase margin (PPM) and performance gain margin (PGM) could be
found for each order of sliding mode controllers.
The order of controller satisfying the level of tolerance with desired PGM and PPM could
be also considered as PRD.
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Problem Statement

Motivation Example

Suppose system has r > 2 and it is controlled by SMC and 2-SMC

Case 3. Which controller is to be selected
for the implementation?

Case\ Controller SMC 2-SMC

Case 1 A>Ac and/or ω < ωc A>Ac and/or ω < ωc

Case 2 A>Ac and/or ω < ωc A≤ Ac , ω ≥ ωc

Case 3 A≤ Ac , ω ≥ ωc A≤ Ac , ω ≥ ωc
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Practical Relative Degree

Practical Relative Degree

Practical Relative Degree (PRD) is understood as the smallest order r of SMC, that
yields a predicted limit cycle in the closed-loop system with the amplitude A ≤ Ac ,
Ac > 0 and the frequency ω ≥ ωc , 0 < ωc < ∞.
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Definition of Performance Margins

Performance Phase Margin

The Performance Phase Margin (PPM) in the system is the maximal additional phase
shift in W (jω) that the closed loop system can tolerate for its output y to exhibit the
acceptable limit cycle with A ≤ Ac , Ac > 0 and ω ≥ ωc , 0 < ωc < ∞ in the real sliding
mode.

Performance Gain Margin

The Performance Gain Margin (PGM) in the system is the maximum additional gain in
W (jω) that the closed loop system can tolerate for its output y to exhibit the acceptable
limit cycle with A ≤ Ac , Ac > 0 and/or ω ≥ ωc 0 < ωc < ∞ in the real sliding mode.
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Performance margins for conventional SMC

DF conventional SMC

Let the controller be
u = −αsign(y) (2)

DF is N(A) = 4α/πA, where A es the amplitude of y .
Harmonic Balance equation is

Re {W (jω)}+ j Im {W (jω)} = −
πA

4α
(3)

where ω is the frequency of the output of system

- 1 .

N(A)

Im

Re

r = 1

r = 2

r = 3

A

A2

 2

A1

 1

W1(j )

W2(j )

W3(j )
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Performance Phase Margin Conventional SMC

PPM SMC Performance Phase Margin Method

1. Locate maximum amplitude Ac and
the minimum frequency ωc in
−1/N(A) and W (jω), respectively.

3. Plot a circle with radio Ac .

3(a) If the frequency ωc is located
outside of the circle, the PPM
should be obtained as the angle
formed between the intersection of
the circle with W (jω) and the
negative real axis.
3(b) If the frequency ωc is located
inside of the circle, the PPM should
be obtained as the angle formed
between the vector associated to ωc

and the negative real axis.
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Performance Gain Margin Conventional SMC

PGM SMC

- 1   .

N(A)

Im

ReA

K1W(j )

 !"

A !

K2W(j )

K3W(j )

K3 >K2 > K1

Performance Gain Margin SMC

Consider the gain K > 1 in the
harmonic balance equation

K ·W (jω) = −
1

N(A)

Solve the harmonic balance equation
for K with Ac and ωc known,

K Re (W (jω)) = −
πA

4α
K Im (W (jω)) = 0

Value of K ≥ 1 which satisfy HB
equation system with r ≤ 2 is
K → ∞

PGM → ∞.
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Performance Gain Margin Relay System

PGM Relay System

Im

Re

A

A
 

- 1   .

N(A)

PGM

Ac

PGM Relay System

1. Consider the gain K > 0 in the
harmonic balance equation

K ·W (jω) = −
1

N(A)

2. Solve the harmonic balance
equation for K with Ac and ωc

known,

K = −
1

N(Ac)

1

W (jωc)

3. The value of K is the PGM of the
system for the acceptable amplitude
Ac .
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Performance margins for 2-SM

DF for Twisting Algorithm

Let the controller be
u = −c1sign(y) − c2sign(ẏ ) (4)

where c1 > c2 > 0.
DF is

N(A) = (4/πA)(c1 + jc2),

where A is the amplitude of the output y
Harmonic Balance equation is

W (jω) = −
Aπ

4

c1 − jc2

c21 + c22
(5)

where ω is the frequency of the output y .
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Performance Margins for 2-SM

Im

Re

A

- 1   .

N(A)

W(j )

 

Ac

 c

 cPPM

PPM

a)

Im

Re

A

- 1   .

N(A)

 

b) K1W(j )

K2W(j )

K3W(j )

K3 >K2 > K1

Figura: For Twisting Algorithm. a)PPM, b)PGM
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Practical Relative Degree

Suppose that PPMc and PGMc are the acceptable performance phase and gain margins.

Practical Relative Degree

Practical Relative Degree (PRD) is understood as the smallest order r of SMC, that yields
a predicted limit cycle in the closed-loop system with the amplitude A ≤ Ac , Ac > 0 and
the frequency ω ≥ ωc , 0 < ωc < ∞ while the PPM ≥ PPMc and PGM ≥ PGMc , where
PPMc and PGMc are the acceptable performance phase and gain margins.

Therefore, the controller, which order corresponds to the calculated PRD, is to be
implemented.
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Conclusions

Practical relative degree in LTI SISO systems controlled by SMC is defined based on
tolerance limits in terms of amplitude and frequency of a possible limit cycle on
sliding variable.

PRD is understood as the smallest order of SMC that yields acceptable performance.

The proposed identification of practical relative degree can be used for the SMC
design for systems treated as a black box.

The notion is given in terms of performance margins which can be useful when the
PRD could be affected by parameter changes or errors in the frequency response
identification.
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