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Introduction DF

DF technique is:

Applied to nonlinear systems where the nonlinear part can be separated from the
linear part.

Based on the hypothesis of law pass filter. i.e. that the input of the nonlinear part is
sinusoidal.

F(σ) W(y)
yσ=Asin(ωt) γ

Nonlinear System

Nonlinear 
Part

Linear 
Part
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Introduction DF

Based on the Fourier series representation of the nonlinearity.

y = F (A sinωt) =
a0

2
+ Σ∞n=1(an cos nωt + bn sin nωt)

a0 =
ω

π

∫ 2π/ω

0

F (A sinωt)dt;

an =
ω

π

∫ 2π/ω

0

F (A sinωt) cos nωtdt;

bn =
ω

π

∫ 2π/ω

0

F (A sinωt) sin nωtdt.
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Introduction DF

Main hypothesis: Linear part is a low pass filter.

Closed loop system, the output can be approximated

y = F (A sinωt) ≈ a0

2
+ Σ∞n=1(a1 cosωt + b1 sinωt)

a2, a3, ... ≈ 0 ; b2, b3, ... ≈ 0

F(σ) W(y)
yσ γ

Nonlinear System

Nonlinear 
Part

Linear 
Part

-1
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Introduction DF

DF is an equivalent complex gain of the nonlinear part

F (σ) = N(A, ω)σ

For symmetric nonlinearities

N(A, ω) =
ω

πA

∫ 2π/ω

0

F (A sinωt) sinωtdt + j
ω

πA

∫ 2π/ω

0

F (A sinωt) cosωtdt
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DF and Harmonic Balance

Harmonic Balance condition

1 + W (jω)N(A, ω) = 0; W (jω) = − 1

N(A, ω)

Identify oscillations
Find frequency ω and amplitude A of the oscillations

(A, ω)

Im

Re

ω

W(j ω)

),(
1
ωAN

−

A
ω1
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Oscillations in SMC systems

NO ONE MODEL TAKES INTO ACCOUNT ALL SYSTEM DYNAMICS!!!
The phenomenon of chattering is caused by the inevitable existence of un-modeled
dynamics.

The principal dynamics are the dynamics of the plant is a model that are used for
controller design.

The un-modeled dynamics are not accounted during the SMC design; delays, actuators,
sensors, etc.

The relative degree increases and the real sliding mode emerges, where the sliding
variable contains a limit cycle (chattering) with finite frequency and finite amplitude.
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DF in SMC

Systems driven by SMC can be analyzed by the frequency domain, when the un-modeled
dynamics are taken into account.

DF-HB technique is applied to identify limit cycles (chattering) and estimate their
parameters, amplitude and frequency.

N(A, ω) =
ω

πA

∫ 2π/ω

0

u(t) sinωtdt + j
ω

πA

∫ 2π/ω

0

u(t) cosωtdt

N(A, ω) is the DF of SMC algorithm.
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Conventional SMC: DF Analysis

Figure: Block diagram of a linear system with relay control and ideal sliding

Replace the Laplace variable s by jω,

−σ = Ac sinωct, (1)

ωc is frequency
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Conventional SMC: DF Analysis

Amplitude Ac and Frequency ωc have to satisfy the Harmonic Balance (HB) eq.

G(jω) = − 1

N(A, ω)
. (2)

For conventional SMC, N(A, ω) DOES NOT DEPEND ON ω

N(A) =
4Um

πA
(3)
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Conventional SMC:DF analysis

Example of Ideal SMC

ẋ1 = x2

ẋ2 = −x1 − x2 + u (4)

σ = x1 + x2

with control
u = −sign(σ) (5)

Transfer function

G(s) =
s + 1

s2 + s + 1
(6)

HB eq.

Re [G(jω] = − πA

4Um
(7)
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Conventional SMC: DF analysis

Example of Ideal SMC

Real part
1− ω + ω2

(1− ω2)2 + ω2
= − πA

4Um
(8)

Imaginary part
ω2

(1− ω2)2 + ω2
= 0 (9)

Ideal sliding-mode
Ac = 0, ωc →∞ (10)
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Conventional SMC: DF analysis

Figure: Graphical solution of the harmonic balance equation for system G(s)

Phase deficit is 90 grade. Finite time convergence!
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Conventional SMC: DF analysis

Figure: Surface

Phase deficit is 90 grade. Finite time convergence!
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Conventional SMC: DF analysis

Example of Real SMC

Figure: Block diagram of a linear system with Real SMC

D(jω, d)G(jω) = − 1

N(A, ω)
, N(A, ω) =

4Um

πA
(11)

D(jω, d) un-modelled dynamics

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 15 / 56



Conventional SMC: DF analysis

Example of Real SMC

Plant

ẋ1 = x2;

ẋ2 = −x1 − x2 + ua;

Actuator
0.01u̇a = −ua + u;

Sliding surface
σ = x1 + x2;

Conventional SMC
u = −sign(σ) (12)

Transfer function

D(s, d)G(s) =
s + 1

(0.01s + 1)(s2 + s + 1)
(13)
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Conventional SMC: DF analysis

Figure: Graphical solution of the HB eq for system D(s, d)G(s) plus 1st order actuator

The phase dificit is 0. Only asymptotic converence.
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Conventional SMC: DF analysis

The phase dificit is 0. Only asymptotic converence.

Figure: Zoom
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Conventional SMC: DF analysis

The phase dificit is 0. Only asymptotic converence.

Figure: Surface
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Conventional SMC: DF analysis

Plant plus 2nd order actuator

ẋ1 = x2 ; 0.0001üa = −0.01u̇a − ua + u

ẋ2 = −x1 − x2 + ua ; σ = x1 + x2

u = −sign(σ)

Figure: Graphical solution of the HB eq for system D(s, d)G(s) plus 2nd order actuator
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Twisting and its DF

Twisting Algorithm

ẍ = u;

u = −c1sign(x)− c2sign(ẋ),

with c1 > c2 > 0.

DF

N(A) = N1 + sN2 =
4

πA
(c1 + jc2),
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Twisting and its DF

HB eq.

W (jω) = πA
−c1 + jc2

4(c2
1 + c2

2 )
,

The phase dificit is arctg(c2/c1). Finite-time convergence
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Terminal Control Law and its DF

Terminal Control Law

ẍ = u;

u = −αsign(ẋ + β|x |ρsign(x)),

with 0.5 < ρ < 1.
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Super-twisting and its DF

ST algorithm

ẋ = u;

u = −β|σ|1/2sign(σ) + us ,

u̇s = −αsign(σ),

DF

N(A, ω) =
4α

πAjω
+

1.1128β√
A

,
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Super-twisting and its DF

HB eq.

W (jω) = −
0.8986

√
A
β

+ j1.1329 α
β2ω

1 + 1.3092 α2

β2Aω2
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Super-twisting and its DF

Existence of the periodic solutions

Write HB eq. as: N(A) = −W−1(jω),

4γ

πA

1

jω
+ 1.1128

λ√
A

= −W−1(jω). (14)

Consider the real part of both sides

1.1128
λ√
A

= −ReW−1(jω) (15)

Eliminating A from eqs. (14)-(15),

Ψ(ω) =
4γ

πω

1

ImW−1(jω)
−
(

1.1128λ

ReW−1(jω)

)2

= 0. (16)

Eq. (16) has ONLY one unknown variable, ω.
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Super-twisting and its DF

Existence of the periodic solutions

Once ω is obtained from Eq. (16).

Amplitude, Ac can be computed as:

Ac =
4γ

πωc

1

ImW−1(jωc)
. (17)
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Super-twisting and its DF

Stability of periodic solution

If the following inequality holds then the periodic solution given by Equation (16) is
locally stable:

Re
h1(A, ω)

h2(A, ω) + N(A, ω) ∂ ln W (s)
∂s

|s=jω

< 0, (18)

where h1(A, ω) = 1.1128λ

2A
3
2
− j 4γ

πωA2 , h2(A, ω) = 4γ
πω2A
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Super-twisting and its DF

Stability of periodic solution

Proof:

Assume that the HB eq. holds for small perturbations.

Damped oscillation of the complex frequency jω + (4σ + j∆ω) corresponds to the
modified amplitude (A +4A):

N(A +4A, jω + (4σ + j∆ω))W (jω + (4σ + j∆ω)) = −1. (19)

N(A, ω) is DF of Super-twisting.

Find the conditions when Λ = 4σ/4A is negative.
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Super-twisting and its DF

Stability of periodic solution

Proof(continue):

Take the derivative of (19) with respect to 4A and write an equation for the
amplitude perturbation 4A.{

dN(4A,4σ,∆ω)

d4A
|4A=0W (jω) +

dW (4σ,∆ω)

d4A
|4A=0N(A, ω)

}
4A = 0. (20)

Take derivatives of N and W , and consider them composite functions:

dN(4A,4σ,∆ω)

d4A
|4A=0 = −j 4γω

πA2
− 1.1128λ

2A
3
2

+
4γA

πω2

(
d4σ
d4A

+ j
d4ω
d4A

)
. (21)

dW

d4A
|4A=0 =

dW

ds
|s=jω

(
d4σ
d4A

+ j
d4ω
d4A

)
(22)

Solve eq. (20) for( d4σ
d4A

+ j d4ω
d4A

) and taking account of (21) and (22), an analytical

formula is obtained, where the real part is (18).
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Is It Reasonable to Substitute Discontinuous SMC by
Continuous HOSMC?
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Motivation Example. Relative Degree One

SMC
Actuator

(𝜇)
Plant+-

𝑥 𝑢

𝐹

𝑢−𝑥𝑅 = 0

Plant

ẋ(t) = ū(t) + F (t)

Actuator

ż(t) =

[
0 1
− 1
µ2 − 2

µ

]
z(t) +

[
0
1
µ2

]
u(t)

ū(t) =
[
1 0

]
z(t)

Assumption 1

The parasitic dynamics (Actuator) is not required for the design of the SMC/HOSMC
gains and its effects can be measured through the ATC µ.
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Considered SMC and Disturbances

Bounded
&

Lipschitz

Bounded

Not Lipschitz

Not Bounded

Lipschitz

Discontinuous
SMC

Continuous
SMC

Reasonable Comparison

Disturbance form

F (t) = α sin(Ωt)

where the upperbounds

|F | ≤ α = δ

|Ḟ | ≤ αΩ = ∆

are assumed known.

FOSMC

u = −M sign(x)

with M = 1.1δ.

Twisting Filter

u̇ = −c1 sign(x)− c2 sign(ẋ)

with c1 = 2.3∆, c2 = 1.1∆.

STA

u = −k1|x |1/2 sign(x) + v
v̇ = −k2 sign(x)

with k1 = 1.5∆1/2, k2 = 1.1∆.
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Simulations Results for Some Values of ATC and Increasing Ω

PPPPPPPControl

Ω
1 10 100

Discontinuous Control

FOSMC

µ = 10−1 1.366×10−1 1.692×10−1 0.934×10−1

µ = 10−2 1.092×10−2 1.361×10−2 1.692×10−2

µ = 10−3 1.064×10−3 1.096×10−3 1.362×10−3

Continuous Control

STA

µ = 10−1 1.243×10−1 8.663×10−1 6.4041

µ = 10−2 9.431×10−4 1.302×10−2 8.694×10−2

µ = 10−3 8.915×10−6 9.445×10−5 1.343×10−3

Table: Sliding-Mode Amplitude Accuracy
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Discussion Aspects

Professor V. Utkin Hypothesis

Simulations confirms that for any value of ATC there exist a bounded disturbance for
which the amplitude of possible oscillations produced by FOSMC is lower than the
obtained applying STA.

Hypothesis 2

It should exists a value of ATC for which the amplitude of chattering produced by
FOSMC and STA are the same.

Hypothesis 3

For any bounded and Lipschitz disturbance, the amplitude of possible oscillations
produced by STA may be less than the obtained using FOSMC if the actuator dynamics
is fast enough.
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Methodology

The parameters that characterizes the chattering of the steady-state behavior of the
nominal system (F (t) = 0) are:

1. Amplitude of periodic motion (A)

2. Frequency of periodic motion (ω)

3. Average power (P)

Dinamically
Perturbed
Systems

Harmonic
Balance
Approach

Describing
Function

Amplitude

Frequency

Average
Power
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DF Analysis

Assumption 2 (Low pass filter hypothesis)

The dynamically perturbed system (Actuator-Plant) W (s) has low pass filter
characteristics with respect to the higher harmonics of the output x(t). Hence the output
of the system converges to a periodic motion [Gelb (1968)], [Boiko (2009)], which can be
well-approximated by its first-harmonic,

x(t) = A sin(ωt),
ẋ(t) = Aω cos(ωt).
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Harmonic Balance Approach

Parameters of a possible periodic motion, amplitude A and frequency ω, can be found by
solving the Harmonic Balance equation (see for example [Gelb (1968)],
[Atherton (1975)])

N(A, ω)W (jω) = −1

where N(A, ω) is the DF of the non-linearity (SMC algorithm).
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Average Power Approach

Lp-chattering [Levant (2010)]

chattLp (x) =

(∫ T

0

ẋp(τ)dτ

)1/p

Drawbacks

There is no chattering in ideal
sliding-mode motion!

How to compute chattLp ?

⇓

A novel approach: Average (Real) Power

P =
1

T

∫ T

0

ū(τ)x(τ)dτ =
ω

2π

∫ 2π
ω

0

A2ω

2
sin(2ωτ)dτ =

4A2ω

π
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Preliminaries

Let the dynamically perturbed system (actuator-plant)

W (s) =
1

s(µs + 1)2

FOSMC

u = −M sign(x)

DF

N(A) =
4M

πA

Twisting Filter

u̇ = −c1 sign(x)− c2 sign(ẋ)

DF

N(A, ω) =
4

πAω
(c2 − jc1)

STA

u = −k1|x |1/2 sign(x) + v
v̇ = −k2 sign(x)

DF

N(A, ω) =
2α1k1

πA1/2
− j

4k2

πAω
with α1 = 1.748.

Leonid Fridman lfridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency Domain 38 / 56



Chattering Parameters Estimated by HB

FOSMC

A = µ

(
2M

π

)

ω =
1

µ

P = µ

(
16M2

π3

)

Twisting Filter

A = µ2

(
2c4

2

π(
√

c2
1 + c2

2 − c1)3

)

ω =
1

µ

(√
c2

1 + c2
2 − c1

c2

)

P = µ3

(
16c7

2

π3(
√

c2
1 + c2

2 − c1)5

)

STA

A = µ2

(
α2

1k
2
1 + 4πk2

πα1k1

)2

ω =
1

µ

(
α2

1k
2
1

α2
1k

2
1 + 4πk2

)1/2

P = µ3

(
4(α2

1k
2
1 + 4πk2)7/2

π5α3
1k

3
1

)
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Chattering Parameters as Function of µ
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Figure: Chattering Parameters as Function of ATC µ→ 0, with δ = ∆ = 1.
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Amplitude Discussion

Result 1

There exist a value of the ATC for which the amplitude of
oscillations caused by FOSMC is equal that the produced
by Twisting Filter,

µ∗1 =
M(
√

c2
1 + c2

2 − c1)3

c4
2

Result 2

There exist a value of the ATC for which the amplitude of
oscillations caused by FOSMC is equal that the produced
by STA,

µ∗2 =
2πM(α1k1)2

( (α1k1)2 + 4πk2 )2
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Frequency Discussion

Result 3

The frequency of oscillations
caused by STA is always
lower than the produced by
FOSMC.

Result 4

The frequency of oscillations
caused by Twisting Filter is
always lower than the
produced by FOSMC.
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2
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a
g
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a
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(A,ω)
TwistingF

ω → ∞

Figure: Graphical Solution of HB equation
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Average Power Discussion

Result 5

There exist a value of the ATC for which the average
power of oscillations caused by FOSMC is equal that the
produced by Twisting Filter,

µ?1 =
M(
√

c2
1 + c2

2 − c1)5/2

c
7/2
2

Result 6

There exist a value of the ATC for which the average
power of oscillations caused by FOSMC is equal that the
produced by STA,

µ?2 =
2πM(α1k1)3/2

( (α1k1)2 + 4πk2 )7/2
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Selection of STA Gains to Minimize the Amplitude of Chattering

Minimum Amplitude for a given
k2 > ∆

k1 =
(

4πk2

α2
1

)1/2

= 2.028
√
k2

Proposed STA Gains†

k1 = 2.127
√

∆
k2 = 1.1∆

† Sufficient stability conditions are satisfied:

k1 > 1.449
√

∆
k2 = 1.1∆
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k1
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Figure: Amplitude as Function of k1
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Selection of STA Gains Minimize the Average Power

Minimum Average Power for a given
k2 > ∆

k1 =
(

3πk2

α2
1

)1/2

= 1.756
√
k2

Proposed STA Gains†

k1 = 1.842
√

∆
k2 = 1.1∆

† Sufficient stability conditions are satisfied:

k1 > 1.449
√

∆
k2 = 1.1∆
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Figure: Average Power as Function of k1
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Motivation Example. Relative Degree Two

SMC
Actuator

(𝜇)
Plant+-

𝑥 𝑢

𝐹

𝑢−𝑥𝑅 = 0

Plant

ẍ(t) = ū(t) + F (t)

Actuator

ż(t) =

[
0 1
− 1
µ2 − 2

µ

]
z(t) +

[
0
1
µ2

]
u(t)

ū(t) =
[
1 0

]
z(t)

Assumption 1

The parasitic dynamics (Actuator) is not required for the design of the SMC/HOSMC
gains and its effects can be measured through the ATC µ.
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Considered SMC and Disturbances

Bounded
&

Lipschitz

Bounded

Not Lipschitz

Not Bounded

Lipschitz

Discontinuous
SMC

Continuous
SMC

Reasonable Comparison

Disturbance form

F (t) = α sin(Ωt)

where the upperbounds

|F | ≤ α = δ

|Ḟ | ≤ αΩ = ∆

are assumed known.

Twisting

u = −c1 sign(x)− c2 sign(ẋ)

with c1 = 2.3δ, c2 = 1.1δ.

CTA

u = −k1|x |1/2 sign(x)− k2|ẋ |1/2 sign(ẋ) + v
v̇ = −k3 sign(x)− k4 sign(ẋ)

with k1 = 1.5∆2/3, k2 = 2.3∆1/2, k3 = 1.1∆, k4 = 0.
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Average Power Approach

Lp-chattering [Levant (2010)]

chattLp (x) =

(∫ T

0

ẋp(τ)dτ

)1/p

Drawbacks

There is no chattering in ideal
sliding-mode motion!

How to compute chattLp ?

⇓

A novel approach: Average (Kinetic) Power

P =
1

T

∫ T

0

ẋ2(τ)dτ =
ω

2π

∫ 2π
ω

0

A2ω2 cos2(ωτ)dτ =
A2ω2

2
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Preliminaries

Let the dynamically perturbed system (actuator-plant)

W (s) =
1

s2(µs + 1)2

Twisting

u = −c1 sign(x)− c2 sign(ẋ)

DF

N(A) =
4

πA
(c1 + jc2)

CTA

u = −k1|x |1/2 sign(x)− k2|ẋ |1/2 sign(ẋ) + v
v̇ = −k3 sign(x)− k4 sign(ẋ)

DF

N(A, ω) =
2α1k1

πA2/3
+

4k4

πAω
+ j

[
2α2k2ω

1/2

πA1/2
− 4k3

πAω

]
with α1 = 1.821, α2 = 1.748.
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Chattering Parameters Estimated by HB

Twisting

A = µ2

(
2c4

2

π(
√

c2
1 + c2

2 − c1)3

)

ω =
1

µ

(√
c2

1 + c2
2 − c1

c2

)

P = µ2

(
2c6

2

π2(
√

c2
1 + c2

2 − c1)4

)

CTA with k4 = 0

Solve the non-linear equality for the frequency ω,

k2

k
3/4
1

(1− µ2ω2)3/4 − k3

k
3/2
1

(1− µ2ω2)3/2 = 2µω

Then, substitute on the amplitude expression,

A =

[
2α1k1

πω2(1− µ2ω2)

]3/2
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Chattering Parameters as Function of µ
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Figure: Chattering Parameters as Function of ATC µ→ 0, with δ = 1, ∆ = 10.
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Amplitude Discussion

Result 1

There exist a value of the ATC for which the amplitude of
oscillations caused by Twisting is equal that the produced
by CTA. For the example

µ∗ = 0.2
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Frequency Discussion

Result 2

The frequency of oscillations
caused by Twisting is always
lower than the produced by
CTA.

-20 -15 -10 -5 0 5

Real ×10-6

-4

-2

0

2

4

6

8

10

Im
a
g
in

a
ry

×10-6

W(jω)

W(-jω)

-N
Twisting

-1
(A)

(A,ω)
Twisting

-N
CTA

-1
(A,ω)

(A,ω)
CTA

ω → ∞

Figure: Graphical Solution of HB equation
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Average Power Discussion

Result 3

There exist a value of the ATC for which the average
power of oscillations caused by Twisting is equal that the
produced by CTA. For the example

µ? = 0.093
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