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@ Conventional Sliding Mode Observers



Conventional Sliding Mode Observers

Observer Purpose: To estimate the unmeasurable states of a system based
only on:

@ the measured outputs and inputs;

@ mathematical model of the system, driven by the input of the system
together with a signal representing the difference between the
measured system and observer outputs

o First Observer: Luenberger

@ Drawbacks of Luenberguer Observer in the presence of uncertainties
(a) Unable to force the output estimation error to zero
(b) The observer states do not converge to the system states

@ Solution: sliding mode observer if the uncertainties are bounded.

@ Advantages:
(a) Force the output estimation error to converge to zero in finite time

(b) Observer states converge asymptotically to the system states
(c) Disturbances can be reconstructed




Observer of Utkin (reduced order SM observer)

@ Consider a nominal linear system

x(t) = Ax(t)+ Bu(t) (1)
y(t) = Cx(t) (2)
@ Assume C has full row rank

@ Necessary and sufficient condition: (A, C) is observable

@ Observability condition will be assumed to hold.




9 A Simple Sliding Mode Observer



@ Coordinate transformation x — T.x
CJ_
n—|% | )

where N € R™("=P) spans the null-space of C.
@ By construction det(T.) # 0
@ Applying the change of coordinates

A1 A B

-1 _ 11 12 _ 1 -1 _

T AT _[A21 Aﬂ], TCB_[BQ], CTZ =0 I ]
(4)

where Aj; € R(T=P)*(1=p) and B; € R(n—P)xq,




@ Assume the system (1) and (2) is already in the form of (4)

@ Utkin proposed observer:

x>+

(t) = ALR(t)+ Bu(t) + Gpv (5)
(1) = Cx(1) (6)

where (%, ) are the estimates of (x, y) and v is a discontinuous
injection term.

o Define e(t) := %(t) — x(t) and e, (t) := y(t) — y(t)

x>

<>




@ Term v is defined component-wise as

vi = psign(e, i), i=1,2,..,p (7)
where p is a positive scalar and e, ; represents the ith component of

ey. (It could be v = pe/||e]|).

@ v is designed to be discontinuous with respect to the sliding surface
S = {e: Ce = 0} pto force the trajectories of e(t) onto S in finite
time.

e Gain G,
c,,:[ L ] (8)

_/p

where L € R("™P)XP represents the design freedom.




Error system é(t) = Ae(t) + Gpv

Partitioning e = col(ey, e,), with e; € R"™P
él(t) = A11e1(t) aF Alzey(t) + L, éy(t) = A21€1(t) aF Azgey(t) — Vv

Component-wise é, ;(t) = Az ei(t) + Axie,(t) — p sign(ey,;) where
Az1,i and Ag ; represent the ith rows of A and Ax»

Equivalent injection veq = Azieq(t)

Sliding dynamics é;(t) = (A11 + LAg1)e1(t) — Reduced Order
Luenberger Observer
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LTI systems with unknown inputs

The system
Consider _ 5 b
where

o x(t) € R" is the state, w(t) € R™ is the unknown input;
e u(t) € R9 is the control, y(t) € RP is the measured output.

Strong Observability:

| N\

The system is strongly observable if for any x(0) and w(t) it follows from
y(t) =0Vt >0 that x(t) = 0 [Hautus: 83].

| A\

Strong Detectability:

The system is strongly detectable if for any x(0) and w(t) it follows from
y(t) =0Vt >0 that x(t) — 0 as t — 0 [Hautus: 83].

v
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LTI systems with unknown inputs

The Rosenbrock of (A, C, D):

R(s):[SIEA —OD]

The values sp € C such that rank R(sp) < n+ m are called invariant zeros
of (A, C, D).




LTI systems with unknown inputs

State reconstruction without differentiation[Hautus: 1983]

@ The system does not have invariant zeroes.

@ All the matrices are known i.e., A, B, C, D.

@ C and D are full rank matrices.

o If rank(C) = p and rank(D) = m, then p > m.
@ rank(CD) = m Relative degree 1 condition.

Walcot-Zak Observes: Canonical form

dyt/dt Al Az Az yt 0
dyl/dt = Ax1 Ax A Y1 + Bu +
dy»/dt A3r A3z Asz ¥2 w(t)

13



© Higher Order Sliding Mode Observers
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@ Strong Observability - Invariant Zeros - Relative Degree

16



Mechanical system

Let us consider the following mechanical system:

M(q)G + C(q,49)q + P(4) + G(q) + A(t,q9,4) = 7
State space form x; = g, xo = ¢, u =T
X1 = X,
X2 = f(t,x1,x2,u)+ w(t,xi,x); Yy =x1
Relative degree condition(linearized case)

0

c=[1 o], D:[l

|, -0
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Mechanical system

Let us consider the following mechanical system:

M(q)G + C(q,49)q + P(4) + G(q) + A(t,q9,4) = 7
State space form x; = g, xo = ¢, u =T
X1 = X,
X2 = f(t,x1,x2,u)+ w(t,xi,x); Yy =x1
Relative degree condition(linearized case)

0

c=[1 o], D:[l

|, -0

When the relative degree of w(t) w.r.t. y(t) is higher than one, i.e.
rank(CD) < m, output differentiations are necessary.

17



A simple observer for Mechanical Systems

Formulation of the problem:

Estimate the velocity using the position, under the hypothesis of bounded
acceleration.

X1 =x2, Xo=f(x1,x,t)+w, y=x.

A simple observer [Davila et.al. 05].

The observer

o= —1,5\/Z|y—>“<1|%sign(y—fq)—i-)?z,
% = f(x1, %o, t) — 1,1Lsign(y — X1),

|f(x1, %2, t) — f(x1,x2,t) +w| < L

o finite-time estimation of xo, i.e., X(t) = x2(t),Vt > T;

@ the best precision in the sense of [Kolmogorov:62]. 18



@ Strong Observability - Invariant Zeros - Relative Degree
@ Relation of concepts for SUISO Systems
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Single Unknown Input- Single Output Case

Strong Observability - Invariant Zeros Relation

Strong observability requires that for any input w, the equality y =0
implies x = 0. The existence of invariant zeros sy implies the existence of
inputs w(sp) such that y =0 for x # 0

20



Single Unknown Input- Single Output Case

Strong Observability - Invariant Zeros Relation

Strong observability requires that for any input w, the equality y =0
implies x = 0. The existence of invariant zeros sy implies the existence of
inputs w(sp) such that y =0 for x # 0

Absence of invariant zeros is sufficient and necessary condition for

strong observability(Haustus,1983)

20



Single Unknown Input- Single Output Case

Strong Observability - Relative Degree Relation

Taking the first n — 1 derivatives of the output

y =
y = Cx= CAx(t)+ CDw

y(=D = CA" x4+ CA" 2Dw + ... + CDW("~?)




Single Unknown Input- Single Output Case

Strong Observability - Relative Degree Relation

Taking the first n — 1 derivatives of the output

y =
y = Cx= CAx(t)+ CDw

y(=1) = CA" x4+ CA"2Dw + ... + CDW("?)

| A\

Relative degree n is required
to obtain a set of n equations independent on w:

cD 0
CAD 0

CA" 2D 0

\

N
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Single Unknown Input- Single Output Case

Invariant zeros - Relative Degree Relation
Rosenbrock matrix for the tuple (A, C, D):

R(S):[SIEA —OD]'

Determinant of the Rosenbrock matrix
det(R) = (s" 1+ a,5" 2 + ... + a) CD+
(s"‘2 gL a3)CAD + ...+ (s + a,,)CA"‘zD + CA"1D




Single Unknown Input- Single Output Case

Invariant zeros - Relative Degree Relation
Rosenbrock matrix for the tuple (A, C, D):

R(s):[SIEA —OD]'

Determinant of the Rosenbrock matrix
det(R) = (s" 1+ a,5" 2 + ... + a) CD+
(s"—2 gL a3)CAD + ...+ (s + a,,)CA"_2D + CA"1D

| A\

Relative degree n is necessary:

The determinant does not dependent on s iff:

CA" 2D 0




Methodology

The Unknown Input Observer (UIO) design problem for strongly observable
systems is reduced to evaluate in real-time derivatives of the output.

The k-th order HOSM differentiator for y;

1 k

2 = vg = — A\ L*T |29 — y;| =T sign(z0 — ;) + 21,
. 1 k=1
21 =v1 = —M1lk |z — | % sign(z1 — o) + 22,

; (10)
. 1 1
Zk—1 = Vk—1 = —A1L2 |Zp—1 — v_2|? sign(zk—1 — Vk—2) + 2k,
Zk = —)\oLsign(zk — Vk—l)a

do=1,1, A =15 Xo=2 X3=3, A =5, }s = 8.

Convergence of the HOSM differentiator [Levant:03].

If the gain L satisfies L > ]}/j-(k+1)(t)| for all t, then z; = yj(") after
finite-time.

23



Robust Exact First-Order Differentiator [Cruz et. al. 11].

20 = —kip1(z0 — yj) +2z1, z1=—kopa(z0 — yj)7

where
¢1(00) := [00]*2 + [00]*/2,
¢2(00) := 0,5sign(00) + 200 + 1,5[00 ).

and [v]P := |v|Psign(v).

Remarks.

| A\

o the differentiator is uniform with respect to the initial differentiation
errofr;

@ this means that the resulting observer converges in prescribed time;
@ useful for systems with strictly positive dwell-time;

@ arbitrary order uniform exact differentiator [Angulo et al.:
Automatical.

24



Asymptote
Levant's differentiator
——URED

141

121

Convergence Time [s]
o

0 . . .
10? 10° 10
Initial Condition z(0) (Logaritmic Scale)

4

Figura: Convergence time of the Uniform Robust Exact Differentiator (URED).
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HOSM differentiator [Angulo et.al: 13,

AUtomatica].
Given a signal y;j(t) to be differentiated (n — 1)-times, the differentiator

2 A =i A | DEai N .
X5 = =Nlyj—%] 7 —kilyj—%] " + X1, i=1,...,n—1,
X2 = —Apsign(yj — %) — kaly; — %11, (11)

with {\;}"_; chosen as Levant’s, a > 0 small enough and {k;}"_; such
that the polynomial

P(s) = knsn_1 + knflS"_2 + .-+ kos + ky, is stable

provides:

@ uniform finite-time estimation, i.e., 3T independent of |X;(0)+
_yJ!—l(O)], i=1,...,n, such that

2=y (), ve>T, i=1...m

@ the best precision under measurement noise [Kolmogorov:62]. 26




@ Strong Observability - Invariant Zeros - Relative Degree

@ HOSM Observers for LTI systems with unknown inputs

27



LTI systems with unknown inputs

Consider

z:{ x = Ax + Bu+ Dw, x(0) = xo, (12)
y = Cx,

where
o x(t) € R" is the state, w(t) € R™ is the unknown input;
o u(t) € RY is the control, y(t) € RP is the measured output.




LTI systems with unknown inputs

Consider )
Z:{x:Ax+Bu+Dw, x(0) = xo, (12)

y = Cx
where
o x(t) € R" is the state, w(t) € R™ is the unknown input;
o u(t) € R is the control, y(t) € RP is the measured output.

Relative degree

| \

The integer r such that

GAD = 0,j=0,..,ri—2, cATID+£0,
r < n—1

where ¢; is the ithm row of C.




Observers for LTI systems with unknown inputs

Cascaded HOSM observer [Fridman et al. 2007]

Observer for the strongly observable case and > 7, r; =n

z=Az+ Dw+ L(y — Cz),
V= W(y_ CZ, V)7 (13)
X=z+ Kv

@ L € R" is the correction term chosen such that A — LC is Hurwitz;

o fori=1, .., m:

Kt = S, Pi= : ;
P ci(A— LC)™ !

e W(-) is a nonlinear HOSM term.




Observers for LTI systems with unknown inputs

Cascaded HOSM observer [Fridman et al. 2007]

Nonlinear HOSM term W7 =[vi v ... v]

Vi=w = —oz,,Nl/”|v1 —(y- Cz)|("_1)/”sign(v1 —-(y—C)+w
Vo = Wy = —a(n_l)Nl/(n_1)|V2 = W1|(”_2)/(”_1)5ign(vQ = W1) + v3

’1/2Sign(vn—l - Wn—2) + Vn

Vnl = Wp_1 = _042N1/2’Vn—1 — Wh2
Vp = _alNSign(Vn — Wn—l)
(14)

where N > |C(A — LC)"~1Dw(t)|.

.

20



servers for LTI systems with unknown inputs

Canonical form of the estimation error x — z

The form is composed for Brunovsky blocks.

] To1-- 00 - v 00 0 0] & 1 [0 - 0]

&1 00 -« 0 0 -+ - D0 -« 0 0 £, 0« 0
%1,‘_2 00 -+ 0 1 -+ - 00-- 00 €1, 0 - 0
&, ok cer % ok s oo 00 - 00 & K oeee ok B
- : . . i W

- + :

‘: 5 = t. < 7 i - Whn—1
éo, 00 -- 00 - -+ 01-- 00 £, 0 - 0 o
i 00 -+ 00 - -~ 00-- 00 0 - 0
é ’ ‘ 00 -« 00 - - 00 -- 01 € s 0 - 0
Em 2 * ¥ * * * ok * * _fm o E I 2

g )

21



Observers for LTI systems with unknown inputs

HOSM Observer [Fridman et al. 2007]

Advantages:
© Finite-time theretically exact observation of the system states

@ The cascade structure of observer aloows to use any pre-filters or
stabilizers

29



Observers for LTI systems with unknown inputs

HOSM Observer [Fridman et al. 2007]

Advantages:
© Finite-time theretically exact observation of the system states

@ The cascade structure of observer aloows to use any pre-filters or
stabilizers

What can we do when the system is strongly observable but >, r; < n? \

29



Weakly unobservable subspace

Invariant zeros

The Rosenbrock of (A, C, D):

R(s):[SIEA —OD]

The values sp € C such that rank R(sp) < n+ m are called invariant zeros
of (A, C, D).




Weakly unobservable subspace

Invariant zeros
The Rosenbrock of (A, C, D):

R(s):[SIEA —OD]'

The values sp € C such that rank R(sp) < n+ m are called invariant zeros
of (A, C, D).

| \

The weakly unobservable subspace V*

A state xg € X is called weakly unobservable, if there exist an input w
such that the corresponding output y,,(t, xp) = 0 for all ¢ > 0. The set of
all the weakly unobservable points is denoted by V* and it is called the
weakly unobservable subspace of the system.




Molinari Decoupling Algorithm [Molinari: 1976]

The Molinari's algorithm

The algorithm is given as follows:

@ Step 0: Let i =0 and Mp = 0 (a null dimension matrix).

24



Molinari Decoupling Algorithm [Molinari: 1976]

The Molinari's algorithm

The algorithm is given as follows:

@ Step 0: Let i =0 and Mp = 0 (a null dimension matrix).

o Step 1: Compute [; = [ M(;D MéA } , Find T; such that I'; is
reduced to c
r_| G+ Hin
Tlrl |: O M,+]_ :| 9

where Gj11 has full row rank.

24



Molinari Decoupling Algorithm [Molinari: 1976]

The Molinari's algorithm

The algorithm is given as follows:
@ Step 0: Let i =0 and Mp = 0 (a null dimension matrix).

o Step 1: Compute [; = [ M(;D MéA } , Find T; such that I'; is
reduced to c
r_| G+ Hin
Tlrl |: O M,+1 :| 9

where Gj11 has full row rank.
@ Step 2: Let i =i+ 1 and back to Step 1.

| A\

RENEILS

The algorithm ends when rank M; = rank M; 1. The matrix M;, for which
the equality was satisfied, is denoted by M,,.

A\




Molinari Decoupling Algorithm [Molinari: 1976]

25



Molinari Decoupling Algorithm [Molinari: 1976]

Theorem

ker M, = V*

Importance of the Molinari’s algorithm

The algorithm gives an explicit algebraic relation between the output, and
its derivatives, and the state.

V(ya }-/7 ceey y(n)) = MnX (15)

v




Molinari Decoupling Algorithm [Molinari: 1976]

Theorem

ker M, = V*

Importance of the Molinari’s algorithm

The algorithm gives an explicit algebraic relation between the output, and
its derivatives, and the state.

V(ya }-/7 ceey y(n)) = MnX (15)

v

Relations for strong observability

i) The system is strongly observable;
ii) the triplet (A, C, D) does not have invariant zeros;

iii) V* contains only the zero vector, i.e. V* = {0}.

25



Observers for LTI strongly observable systems with
unknown inputs

Canonical form

Let >, ; mrj = r, < n. The canonical form is composed by Brunovsky
blocks and a w dependent block.

&u Gl wew W G Bl O 0 [ % | T 0
S, 00« 00 -- - 00-- 00 & 0 -0
Eia Gl B § s Gl G O 1y 8 <= 0
ST Kok cee ok ke e 000 e DD ST o

: : : : : : § wy

Wy

bw |=]00 - 00 i1 00 & |t|lO 0 :

&, 00 -« 0 0 -« - 00 00 & 0 - 0| | wa

: : i : : : : : W
£ s 00 <« 0 0 - v 00 - 0 1|8, 0 - 0
é] * ke EIE TR S T * % fp,,,. E IR
{Z::; * % * ok * ok * * 57;;1 * *
.E * ok * ¥ * ¥ * * . * *
& En g

v
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Observers for LTI strongly observable systems with
unknown inputs

Observer in [Fridman et al. 2007]

v The states are estimated exactly after finite time;

v The cascade structure of observer allows to use a pre-filter.

7



Strong detectability

If the system is not strongly observable, but strongly detectable, can we
design an observer?

29



Strong detectability

If the system is not strongly observable, but strongly detectable, can we
design an observer?

Relations for strong detectability

i) The system is strongly detectable;

ii) the triplet (A, C, D) is minimum phase, i.e. the invariant zeros of the
triplet (A, C, D) satisfy Res < 0;

iii) all the trajectories belonging to V* converges to zero asymptotically.

29



Observers for strongly detectable LTI systems

A canonical form.

Ain DiAix DiAgz Dy
X = A (G A 0 X + 0 w,
A31Ci AxnG Asz 0

_[a o 0],
Y = 10 ¢ ol™

Q the triplet (A1, Ci, D) is strongly observable;
@ the pair (A2, (2) is observable;
© As; is stable (i.e. the invariant zeros of the system).




Observers for strongly detectable LTI systems

An observer [Fridman et al. 2011]

@ x1 can be recovered using y; and its derivatives (strong observability);

@ xp is estimated asymptotically using Luenberger observer because it is
not contaminaited

S0 = Aoyr + Ao + L Go(x — %);
e for x3 a copy of the system without injection (As3 is stable)

%3 = As1y1 + Asays + Ak,

v

@ it turns out that every strongly detectable (linear) system can be
written in the previous form [Moreno:01];

@ strong detectability [Hautus:83] is equivalent to the asymptotic
distinguishability of the state trajectory from the output [Moreno:01]

40/




What happens when the system is not strongly observable. Is still possible
to do something?

a1



@ Strong Observability - Invariant Zeros - Relative Degree

@ Functional HOSM Observers for linear systems

492



Functional Unknown Input Observers

Problem formulation

Given a linear system X, estimate a linear combination z = Ex using only
output measurements.

Motivation
@ in many output based control problems, it is not necessary to
estimate the whole state but a linear combination Kx:
@ this is particularly true for output based sliding-mode control: only the
the surface is required;

@ despite a UIO does not exist (i.e. the system is not strongly
detectable), the required functional UIO may exist.

a3



THEOREM. [Sanuti and Saberi: 87]

Every linear system, with p > m, can be written as

A1 DiAx DAz DiAws Dy
Ax G Ao 0 0 X4 0 W
A31CGi AnG Asz 0 0 ’
AnnCG ApG 0 Asa 0

GG 0 0O
y:[o G 0 0:|X, z:[El E> Es E4}x,

and the following properties hold:
Q (A11, Gi, Dy) is strongly observable and (A2, C2) is observable;

@ As;3 are the stable invariant zeros and As4 the unstable ones.

Remark. [Angulo et.al: JFI14]

A functional UIO exists iff E5 = 0.

a4



@ Strong Observability - Invariant Zeros - Relative Degree

@ Nonlinear case
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Observer for nonlinear system with unknown inputs

MIMO locally stable system [Fridman et al.: 2008].

Consider

x = f(x) +g(x)e(t), x(0) = xo, (16)

where
o x(t) € R" is the state, ¢(t) € R™ is the disturbance;

@ y(t) € R™ is the measured output.

A

Formulation of the problem:

Estimate of x(t) and ¢(t) based on output measurements only y(t).

The system is locally weakly observable
The system is BIBS

46



Observer for nonlinear system with unknown inputs

Coordinate transformation.

New coordinates
& hi(x)
. ] Lehi(x

g = '5_2 = () , Ii=1..mr=n+..4+rm
& L hi(x)
¢t M

§ = o= :
§m Nn—r

Local diffeomorphism.

There exist a local diffeomorphism such that

x=o71(¢n)




Observer for nonlinear system with unknown inputs

Transformed system.

New coordinates
§ = NE+P(En) + N(En, o(x))
n = q(é?ﬁ)
where
[0 1 0 0 0
0 0 1 0 0
/\I - . ) ¢',- - .
|0 00 0 L;"h,-(x)
[ 0
0
Al = : , Yi=1..m
ST L L () () ,




Observer for nonlinear system with unknown inputs

State estimation [Fridman et al.: 2008].
HOSM Differentiator

Vé — Wé — —ar’_Nl/ri|V(’) — yi|(ri_1)/risign(vé _ yl) _I_ V]I_
Vi =w = —a(ri_l)/\/l/("f_l)lvi — Wé‘(rf—2)/(rf—1)sign(vll —w)+ V4
N S 1/2.,i i 1/2; i i i
Vr,-—l - W,'—]. - —OézN / |Vr,-—1 _ Wr,-—2| / SIgn(VI‘,'—l _ Wr,-—2) + Vr,-
v, = —a1Nsign(v; — w,_1)
(17)
Estimation by construction
11 o1 M1
é-]. — VO’ n - Vrl—l’ 5!‘1 - Vr17
(18)
cm _ ,m fm __ .,m A __ .m
é.]. — VO (A n - VI’1—17 grl - Vr17

7;7 = q(é\a ﬁ) 49



Observers for systems with unknown inputs

Consider () ) 0
x = f(x)+ g(x)w, x(0)= xp,
> 19
{ y = h(x), (19)
where
o x(t) € R" is the state, w(t) € R™ is the unknown input;

o y(t) € RP is the measured output.

\

Formulation of the problem:

Estimate x(t) based on output measurements only {y(t),t € [0, T]}.

When the relative degree of y is higher than one, output differentiations
are necessary [Hautus: 83].

50



Observers for systems with unknown inputs

DEFINITION: Strong Observability. [Angulo et. al.: Automatica 13
(8)]

Y is strongly observable if there exists a function F and integer k such that

X:F(y7)./?"' >y(k))'

@ equivalent to the distinguishability of the state trajectory using only
the output when f, g and h are meromorphic [Angulo et.al: 10];
@ also equivalent when X is linear [Hautus: 83]. In such a case, F is
linear and therefore
dk

y
= WM foty(s)ds , M is a matrix. (20)

e function F or matrix M can be computed using an algorithm [Angulo
et. al: 10, Bejarano et.al.: 11, Davila et.al:10].

51



Further remarks.

@ since the HOSM differentiators will estimate x, each individual gain
L; should satisfy

Lj > ] = [f(x) + gi(x)wl|
@ for general nonlinear systems, the use of the HOSM differentiator is
thus restricted to stable systems with bounded unknown inputs;
o for linear systems, the requirement of stability of the system can be
circumvented using a Luenberger observer first [Bejarano et.al.: 10];
@ analogously, an internal model for the unknown input can also be

used to relax the requirement of bounded unknown inputs [Bejarano
et.al: 10].

52



@ Strong Observability - Invariant Zeros - Relative Degree

@ Unknown input identification

1%



Unknown input identification

Problem formulation.

Given
f x=1f0)+ 80w,  x(0) = xo,
s { y = h(x),

estimate the input w(t) using only the measured output.

(21)

Motivation.

@ when w is used to represent a disturbance, its estimate can be used
for robust control [Ferreira et.al. CST: 11];

@ when w is parametric uncertainty, its estimate can be used to
estimate the unknown parameters [Davila et.al.:10];

o finite-time parameter estimation using Super-Twisting [Guzman et.al.:
CTA TIE 2015, Gustavo Rueda 2016,2017.

v

1Y%



Unknown input identification

DEFINITION: static left-inverse.

> has a static left-inverse if there exists a function G and integer k such
that

w = G(yvya ay(k))

Remarks.

| \

@ if X is strongly observable and rank g = m then X has a static
left-inverse [Angulo et.al: Automatica,13(8)];

@ however, neither strong observability nor strong detectability are

necessary for X to have a static left-inverse (see, e.g., [Bejarano et.
al.: SIAM 09] ).




Unknown input identification

Recall the canonical form

A1 DiAx DiA1z DiAp Dy
AnCy  Ax 0 0 0
A31Cr ApC  Ass 0 0
AnCG ApG 0 Ass 0

_[a 0 o0o0],
Y=l o 6 o0o0l®

THEOREM. [Bejarano et. al: 09]

@ obviously w can be estimated iff x; can be estimated and
rank D; = m;

@ it is not necessary strong observability nor strong detectability;

@ the system has a static left-inverse if and only if the invariant zeros
that do not belong to the set of unobservable eigenvalues are stable.

56



© Output-based stabilization of disturbed systems
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© Output-based stabilization of disturbed systems
@ Estimation of the disturbance.
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Output-feedback stabilization of disturbed systems

x=Ax+ Blu+w], y=Cx.

First approach. [Ferreira et. al.: 10]

Use HOSM observers to estimate in finite-time:

@ the unknown input w, and then remove it using control
u=—w-+v;

@ the state x to construct the nominal control v = KX.

Remarks: when to use or not SM in the control? [Ferreira et. al.: 10]

@ identification error < execution error: remove perturbation by
identification;

@ execution error < identification error: use SM directly;
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© Output-based stabilization of disturbed systems

@ Output-feedback finite-time stabilization of disturbed LTI systems.

60



x=Ax+ Blu+w], y==Cx, |[w(t)| < Wilx(t)|]+ Wa.

Second approach. [Angulo et.al.: 11]

@ under strong observability, use a HOSM observer to estimate x in
finite-time;

@ by controllability there exists an output ((t) € R™ (not necessary the
measured one) with vector relative degree;

@ using (; and its derivatives, write the system as m integrator chains;

@ use (non-homogeneous) HOSM controllers to obtain (robust)
finite-time state stability

vi = —ai(kiallx|l + ki2)Hr (G G, ¢Y), i=1,m,

H,, is a ri-th order SM algorithm, e.g.,

Ha(Gi G) = 5 +'ﬁ|§,-|§sigr£ Ci‘
|Gil + BIGi|2
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Output-feedback stabilization of disturbed systems

Moreover

@ the previous requirement of a measured output with vector relative
degree is not necessary;

@ robust finite-time stabilization of the whole state: useful for switching
systems [Angulo and Levant: [JSS11];

@ the same idea can be used for strongly observable nonlinear systems
that are flat (not necessarily w.r.t. the measured output) [Angulo et.
al.: AUTOMATICA,2013,NO.9 |;

@ adapt the gain of the differentiator and control: reduce chattering;

@ Separation Principle: (robust) on-line detection of the convergence of
the differentiators;

@ until now, this was done by waiting enough time.
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@ Fault detection
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@ Fault detection
@ Fault detection using multi-model approach
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Fault detection using multi-model approach

The system with fault

x = f(x)+ Bu+ Fi(x,u), i=1,...,
y: hEx; (x, ) q (22)
where
@ x(t) € R" is the continuous state;
e u(t) € R™ is a known input;
o y(t) € RP is the measured output;
e Function and matrix (f, B) are known;

o Fi(x, u) are faults (known a-priori) defined by:
Fi(x,u) € F, where F = {Fi(x,u),...,Fq(x,u)}

i.e. g faulty cases that change the system properties (plant faults)
or/and the dynamical input properties of the system (actuator faults).

v
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Fault detection using multi-model approach

Problem statement
Given {y(s),s € [0, t]} identify and isolate the g possible faults (FDI).

Main idea: use ¢ HOSM Observers as multi-models and the equivalent
injection to carry out FDI.

Proposed Solution (H. Rios et al. [IJRNC 2014)

e HOSM differentiator applied to the estimation error dynamics;

@ Finite-time reconstruction of continuous state;

o Fault detection and isolation using Equivalent Injection;
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Conclusions

HOSM Observers

@ provide theoretically exact observation and unknown inputs and fault
estimation under sufficient and necessary conditions of the strong
observability/ detectability of states or unknown inputs or faults;
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Conclusions

HOSM Observers

@ provide theoretically exact observation and unknown inputs and fault
estimation under sufficient and necessary conditions of the strong
observability/ detectability of states or unknown inputs or faults;

@ provide best possible approximation w.r.t. discretization step and/or
bounded deterministic noises:
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Conclusions

HOSM Observers

@ provide theoretically exact observation and unknown inputs and fault
estimation under sufficient and necessary conditions of the strong
observability/ detectability of states or unknown inputs or faults;

@ provide best possible approximation w.r.t. discretization step and/or
bounded deterministic noises:

@ can ensure prescribed time convergence independent from any initial
conditions.
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