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Motivation and goals

Theoretically exact uncertainty compensation control

Sliding mode control

Full state measurement is needed

Robust on the sliding mode surface

Chattering!!

Robust to matched uncertainties
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Motivation and goals

Starting point . . .

The advent of high order sliding mode observers

Robust in the presence of unknown inputs

Theoretically exact state estimation and unknown inputs identification

Finite time convergence

Bejarano, F., Fridman, L., and Poznyak, A., ” Exact State Estimation for Linear Systems with
Unknown Inputs Based on Hierarchical Super-twisting Algorithm ”International Journal of Robust
and Nonlinear Control, 17, 1734− 1753.

J. Dávila, L. Fridman and A. Levant, ” Second order sliding mode observer for mechanical systems
” , IEEE Transactions on Automatic Control, 2006.

F. Bejarano, L. Fridman, ” High order sliding mode observer for linear systems with unbounded
unknown inputs,” IJC 2010

(UNAM) Output Robust Control August 2015 5 / 45



Motivation and goals

Contribution
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Motivation and goals

General goals

Observation and identification based control strategies design for
unknown inputs systems (theoretically exact state observation and
identification of unknown inputs)

Accuracy

Control strategies comparison
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Problem statement

Linear time invariant system with unknown inputs

ẋ (t) = Ax (t) + Bu (t) + Dw (t) ,

y (t) = Cx (t)

x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p, w(t) ∈ <q

A1. (A,C,D) strongly observable

A2. w(t) bounded with a constantw+ such that ‖w (t)‖ ≤ w+ for all t ≥ 0

A3. w(t) satisfies
∥∥w(i) (t)

∥∥ ≤ w+ for i = 1, . . . , α ∀t ≥ 0.
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Methodology

HOSM algebraic observer

Luenberger observer (bound the error trajectories)

˙̃x(t) = Ax̃(t) + Bu(t) + L (y (t)− ỹ (t)) ,

ỹ (t) = Cx̃

Defining
e (t) := x (t)− x̃ (t)

Error dynamics

ė (t) = (A− LC) e (t) + Dw (t)

ye = Ce

‖e (t)‖ ≤ e+, for all t > T
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Methodology

Unknown inputs decoupling

Step 1
I ye (t) = C︸︷︷︸

M1

e (t)

Step 2

I
d
dt

[
(M1D)⊥ y (t)

]
= ( CD)⊥ CAx (t)

I

[ ( d
dt M1D

)⊥
M1Ã

C

]
︸ ︷︷ ︸

M2

e(t) = d
dt

[
(M1D)⊥ 0

0 Ip

] [
ye(t)∫

yedt

]

Step 3

I
d
dt

(M2D)⊥M2e (t) = (M2D)⊥M2Ãe (t)

I

[ d
dt

(M2D)⊥M2Ã

C

]
︸ ︷︷ ︸

M3

e = d2

dt2

[
J2 0
0 Ip

] ye∫
ye∫ ∫

yedτdt


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C

]
︸ ︷︷ ︸

M3

e = d2

dt2

[
J2 0
0 Ip

] ye∫
ye∫ ∫

yedτdt


(UNAM) Output Robust Control August 2015 12 / 45



Methodology

Unknown inputs decoupling

Step 1
I ye (t) = C︸︷︷︸

M1

e (t)

Step 2

I
d
dt

[
(M1D)⊥ y (t)

]
= ( CD)⊥ CAx (t)

I

[ ( d
dt M1D

)⊥
M1Ã
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C

]
︸ ︷︷ ︸

M2

e(t) = d
dt

[
(M1D)⊥ 0

0 Ip

] [
ye(t)∫

yedt

]

Step 3

I
d
dt
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Methodology

State recovering

There exist a k ≤ n such that rank (Mk) = n, (Molinari, 1976)

Step k

I

[ d
dt

(Mk−1D)⊥Mk−1Ã

C

]
︸ ︷︷ ︸

Mk

e = dk−1

dtk−1

[
Jk−1 0

0 Ip

] ye∫
ye∫

. . .
∫

yedτdt


︸ ︷︷ ︸

Y[k−1]

Then,

e (t) =
dk−1

dtk−1 M+
k

[
Jk−1 0

0 Ip

]
Y

[k−1]

︸ ︷︷ ︸
Θ(t)
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Methodology

HOSM differentiator

(Levant,2003)

ż0 = λ0Λ
1

i+1 ‖z0 −Θ (t)‖
i

i+1 sgn (z0 −Θ (t)) + z1

ż1 = λ1Λ
1
i ‖z1 − ż0‖

i−1
i−2 sgn (z1 − ż0) + z2

...

żi−1 = λi−1Λ
1
2 ‖zi−1 − żi−2‖

1
2 sgn (zi−1 − żi−2) + zi

żi = λiΛ sgn (zi − żi−1)

i: differentiator order, under A3 i = α+ κ− 1

diΘ(t)
dti = zi ∀t ≥ T
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Methodology

State estimation

∀t ≥ T

x̂ (t) = x̃ (t) + M+
k z(k−1)
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Methodology

Identification of perturbations

From the error dynamics

ė (t) = (A− LC) e (t) + Dw (t)

Perturbation identification ∀t ≥ T ,

ŵ (t) = D+(ė (t)︸︷︷︸
zk

− (A− LC) e (t)︸︷︷︸
zk−1

)
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Perturbation identification ∀t ≥ T ,

ŵ (t) = D+(ė (t)︸︷︷︸
zk

− (A− LC) e (t)︸︷︷︸
zk−1

)

Successive derivatives ∀t ≥ T ,

ŵ(i) (t) = D+(zk+i (t)− (A− LC) zk+i−1)

for all i = 1, . . . , α− 1
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Methodology

Estimation and identification accuracy

Measured output

Θ (t) = Θ0 (t) + η (t)

η Deterministic noise signal ‖n(t)‖ ≤ η

δ Sampling step

∆ Combined effect of deterministic noise and sampling time

(Levant,2003), (Angulo-Levant,2011)

Error δ η ∆

Observation O
(
δα+1

)
O
(
ν

α+1
α+k

)
O
(
∆α+1

)
Identification O (δα) O

(
ν

α
α+k

)
O (∆α)

Differentiator O (δ) O
(
ν

1
α+k

)
O (∆)
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Matched uncertainty compensation
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Matched uncertainty compensation Control with or without chattering?

Control with or without chattering

Objectives:
HOSM based robust control laws design

Selection criteria for choosing the best control strategy
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Matched uncertainty compensation Control with or without chattering?

Control with or without chattering

Matched uncertainties system

ẋ (t) = Ax (t) + B (u (t) + Gw (t)) ,

y (t) = Cx (t)

Control:

u(t) = u0(t) + u1(t)

Where:

u0(t) nominal control, i.e. (w(t) = 0)

u1(t) uncertainty compensation
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Matched uncertainty compensation Control with or without chattering?

Control with or without chattering

HOSM compensation control

u(t) = −Kx(t)− Gŵ(t)

Integral sliding mode control (Utkin-Shi, 1996)

u(t) = −Kx(t)− ρ s(x, t)
‖s(x, t)‖

s(x, t) = B+

[
x(t)− x(T)−

∫ t

T
[Ax(τ) + Bu0(τ)] dτ

]
, ρ > w+
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Matched uncertainty compensation Control with or without chattering?

Closed-loop system accuracy ε

HOSM compensation control

ε = O
(
∆α+1)︸ ︷︷ ︸

Observation

+ O (∆α)︸ ︷︷ ︸
Identification

+ O (µ)︸ ︷︷ ︸
Execution

Integral sliding mode control

ε = O
(
∆α+1)︸ ︷︷ ︸

Observation

+ O (µ)︸ ︷︷ ︸
Execution

Where µ is the actuator time constant with an execution error O(µ) (Fridman,
2001, 2002).
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Matched uncertainty compensation Control with or without chattering?

Discussion...

O (∆α)︸ ︷︷ ︸
Identification

<< O (h)︸ ︷︷ ︸
Execution

Compensation

O
(
∆α+1)︸ ︷︷ ︸

Observation

<< O (h)︸ ︷︷ ︸
Execution

<< O (∆α)︸ ︷︷ ︸
Identification

ISM control

O (h)︸ ︷︷ ︸
Execution

<< O
(
∆α+1)︸ ︷︷ ︸

Observation

Compensation control
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Matched uncertainty compensation Control with or without chattering?

Experiments

x =
[
θ, α, θ̇, α̇

]T

A =


0 0 1 0
0 0 0 1
0 82,4 1,31 0
0 56,81 0,37 0

 ,

B =


0
0

46,75
13,20

 , D =


0
0

46,75
13,20

 ,
C =

[
1 0 0 0
0 1 0 0

]
w(t) = 0,4sen(2,5t) + 0,5.
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Matched uncertainty compensation Control with or without chattering?

Compensation control ISM Control
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Figura: (a) δ = 20(µs), µ = 300(µs); (b) δ = 500(µs), µ = 83(µs) ; (c)
δ = 1000(µs), µ = 83(µs)
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Matched uncertainty compensation Control with or without chattering?

ISM

0 5 10 15 20 25 30
-0.08
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0
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x 2

A

Time (s)
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-0.08

-0.04

0

0.04

0.08

Time (s)

B

Figura: x2[rad] using a 1st order HOSM differentiator (izq.) and a 2nd order HOSM
differentiator (der).
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Matched uncertainty compensation Control with or without chattering?

Figura: Pendulum position x2 [rad] (above). The solid line shows the voltage signal
added as a motor perturbation. The total unknown input identified signal ŵ is also
showed.
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Matched uncertainty compensation Control with or without chattering?

Conclusions

Two robust strategies were proposed:

Compensation control based on the estimated state and unknown inputs
identification.

Integral sliding mode control based on the estimated states.

A methodology for the selection of an appropriate controller considering
the accuracy of observation and identification algorithms as well as the
actuator time constant

The results were validated experimentally in the inverted rotary
pendulum system
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Unmatched uncertainty compensation
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Unmatched uncertainty compensation

Objectives:
Compensate the effects of the unmatched perturbations and stabilize the
subactuated dynamics through the sliding surface

Maintain the remained states trajectories bounded
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Unmatched uncertainty compensation

System affected by perturbations

ẋ (t) = Ax (t) + Bu (t) + Dw (t) ,

y (t) = Cx (t) (1)

x (t) ∈ <n, u (t) ∈ <m, and y (t) ∈ <p (1 ≤ p < n)

A1. (A,B) controllable

A2. (A,C,D) strongly observable

A3. w(t) and its derivatives up to order r are bounded, i.e. |ν| ≤ w̆0 as well as
|w(i)| ≤ w̆i for i = 1, r, for all t ≥ 0;
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Unmatched uncertainty compensation

Block-controllable form

Transformation into strict feedback form (Loukianov-Utkin,1993),

ẋ1 = A1x1 + B1(x2 + Γ1w)

ẋi = Aix̄i + Bi(xi+1 + Γiw)

ẋr = Arx̄r + Br(u + Γrw)

i = 2, r − 1, x̄i = [ xT
1 . . . xT

i ]T , xi ∈ Rni , ni = rank(Bi),
∑r

i=1 ni = n

The sub-system comprising i = 1, r − 1 represents the sub-actuated
dynamics.

i = r corresponds to the actuated dynamics, xr ∈ Rm.
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Unmatched uncertainty compensation

Control goal and methodology

Control aim
The goal is to design an output feedback sliding mode controller u allowing
the coordinate x1 to track a smooth signal xd in spite of system perturbations
w.

The control relies on the availability, in finite time, of the exact
estimation of the state and the identification of the perturbations and their
successive derivatives until r − 2-th order.

The design of the dynamic sliding surface design takes place in
r − 1-steps.

At r − th-step the sliding mode control is designed.
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Unmatched uncertainty compensation

Sliding surface design

Step 1. The coordinate x2 can be exploited as a fictitious control input
x2 := φ1,

φ1 = −Γ1ŵ− B†1(A1x1 − Â1(x1 − xd)− ẋd)

where Â1 ∈ Rn1 is a Hurwitz matrix containing the desired convergence
performance of x1 towards xd.

...

Step i. The coordinate xi+1 is a fictitious control input for (2), it is
xi+1 := φi

φi = −Γiŵ− B†i (Aix̄i − Âi(xi − φi−1) + Xi−1(xi−1 − φi−2)− φ̇i−1)
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Unmatched uncertainty compensation

Sliding surface design

Step r. Finally, the sliding surface s is designed like

s = xr − φr−1

with s ∈ Rm, s = [ s1 . . . sm ]T
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Unmatched uncertainty compensation

Control law design

The control law becomes

u = −B†r

(
Arx̄r −

·
φ̃r − BT

r−1(xr−1 − φr−2) + υ

)

with the control υ ∈ Rm is the super-twisting control (Levant,1993)

υ = K1Ψ1 + K2

∫ t

to
Ψ2dt
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Unmatched uncertainty compensation

Closed-loop system accuracy ε

The control realization error is given by

ε = O
(
∆α+1)︸ ︷︷ ︸

Observation

+ O (∆)︸ ︷︷ ︸
Identification

+ O (µ)︸ ︷︷ ︸
Execution
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Unmatched uncertainty compensation

Example: 3DOF Helicopter

Consider a 3-DOF helicopter

Figura: Schematic diagram of a 3-DOF helicopter.

A linearized model around ε∗2 = 0 is given by

ε̈1 = 0,45 ((u1 + f1) + (u2 + f2))

ε̈2 = 3,05 ((u1 + f1)− (u2 + f2))

ε̈3 = −0,49ε2 + ν
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Unmatched uncertainty compensation

Example: 3DOF Helicopter

Simulation target

The travel ε3 tracks a desired trajectory xd = 5 sin(1,1t) in spite of faults and
disturbances affecting the system.

Simulation trial:
(a) 0 ≤ t < 60 the system is working free of perturbations ( w = 0, with

w = [ ν f1 f1 ] );

(b) 60 ≤ t a mismatched disturbance appears ν = 2 sin 3t + 1,5;

(c) in 100 ≤ t a perturbation (type of liquid oscillatory fault) occurs
f1 = 5 cos(1,5t) + 5;

(d) 140 ≤ t, a perturbation (i.e. drifting fault f2 = βt : β > 0) appears in the
second actuator. The simulation sampling time is 100[µs].
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Unmatched uncertainty compensation

Simulation results

Sliding Mode Compensation vs H∞
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Figura: Travel tracking performance: (A) proposed control and (B) H∞ control.
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Unmatched uncertainty compensation

Simulation results

Travel performance considering different sampling steps
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Figura: Tracking error accuracy considering different sampling steps: δ = 10[µs] and
δ = 1[ms].
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Unmatched uncertainty compensation

Conclusions

A tracking strategy for systems under the effects of unmatched uncertainties was presented.

Based on the exact reconstruction of the unknown inputs, the effects of the unmatched uncertainties
can be compensated through a sliding mode control.

A nested backward strategy to design a dynamic sliding surface was proposed.

Simulations in a 3DOF helicopter were done in order to show the feasibility of the strategy.
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Strongly observable system

ẋ (t) = Ax (t) + Dw (t) ,

y (t) = Cx (t)

Definition
A system is strongly observable if and only if for any initial condition x0 and
unknown input w (t), the condition y (t) = 0 for all t ≥ 0 implies that
x (t) = 0 for all t ≥ 0 Hautus,1983.
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rank
[

sI − A B
]

= rank
[

sI − A1 −B1 0
−E1 sI − F1 Im

]
= rank

[
sI − A1 −B1

]
+ m

rank
[

sI − A B
]

= n⇐⇒ rank
[

sI − A1 −B1
]

= n− m

(A,B) controllable⇐⇒ (A1,B1) controllable
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