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@ Describing Function Method
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o Twisting Algorithm: DF Analysis
@ Terminal Control Law: DF Analysis
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Introduction DF

UNAM

DF technique is:
@ Applied to nonlinear systems where the nonlinear part can be separated from the

linear part.
@ Based on the hypothesis of law pass filter. i.e. that the input of the nonlinear part is
sinusoidal.
i Nonlinear System !
o=Asin(wt)! y ! y
- Fl) w(y) —
i Nonlinear Linear i
! Part Part !
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Introduction DF

UNAM

@ Based on the Fourier series representation of the nonlinearity.

y = F(Asinwt) = % + .21 (an cos nwt + by, sin nwt)

w 27w

a = —/ F(Asinwt)dt;
T Jo
w 27w

a, = —/ F(Asinwt) cos nwtdt;
T Jo
w 27w

b, = —/ F(Asinwt)sin nwtdt.
T Jo
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Introduction DF

UNAM

Main hypothesis: Linear part is a low pass filter.

Closed loop system, the output can be approximated

y = F(Asinwt) = % + X2 (a1 coswt + by sinwt)

a,as,...~0 y b2,b3,...%0

Nonlinear System

o y ki
1 F(0) w(y) |
5 Nonlinear Linear i
i Part Part i
-1
L

Leonid Fridman Ifridman@unam.mx (UNAM)  Analysis of Sliding Mode Controllers in the Frequency 5 /56



Introduction DF

UNAM
DF is an equivalent complex gain of the nonlinear part
F(o) = N(A,w)o
For symmetric nonlinearities
w [P w [
N(A,w) = W—A/O F(Asinwt) sin wtdt —|—j7r—A/0 F(Asinwt) coswtdt
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DF and Harmonic Balance

UNAM
Harmonic Balance condition
1
1+ W(Hw)N(A =0: Wiiw)= ———
FWINAW) =0 W) = s
o lIdentify oscillations
o Find frequency w and amplitude A of the oscillations
Im
Re
o —— (A, o)
__ 1
N(AD) [l
W(j o)

Leonid Fridman Ifridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency 7 /56



Oscillations in SMC systems

UNAM

NO ONE MODEL TAKES INTO ACCOUNT ALL SYSTEM DYNAMICS!!!
The phenomenon of chattering is caused by the inevitable existence of un-modeled
dynamics.

The principal dynamics are the dynamics of the plant is a model that are used for
controller design.

The un-modeled dynamics are not accounted during the SMC design; delays, actuators,
sensors, etc.

The relative degree increases and the real sliding mode emerges, where the sliding
variable contains a limit cycle (chattering) with finite frequency and finite amplitude.
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DF in SMC

UNAM

Systems driven by SMC can be analyzed by the frequency domain, when the un-modeled
dynamics are taken into account.

DF-HB technique is applied to identify limit cycles (chattering) and estimate their
parameters, amplitude and frequency.

w 27 Jw w 27 Jw
N(A w) = W—A/O u(t) sinwtdt —|—jﬂ_—A/0 u(t) coswtdt

N(A,w) is the DF of SMC algorithm.
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Conventional SMC: DF Analysis

U, u

G(s)

—

Figure: Block diagram of a linear system with relay control and ideal sliding

Replace the Laplace variable s by jw,

we is frequency
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—0 = Acsinwct,
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Conventional SMC: DF Analysis

UNAM

Amplitude Ac and Frequency wc have to satisfy the Harmonic Balance (HB) eq.

. 1
For conventional SMC, N(A,w) DOES NOT DEPEND ON w
4Un
N(A) = —F (3)
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Conventional SMC:DF analysis

UNAM
Example of Ideal SMC
)51 = X2
X2 = —x1—X+u (4)
o = x1+tx
with control
u = —sign(o) (5)
Transfer function +1
s
)= arert (©)
HB eq.
. TA
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Conventional SMC: DF analysis

UNAM
Example of Ideal SMC
Real part
1—w4w? TA
R T TN (8)
(1-—w?) +w 4Un
Imaginary part
W2
e 5 =0 9)
(1—-w?) +w?
Ideal sliding-mode
Ac = 0, We —> O (10)
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Conventional SMC: DF analysis

1 4
0.5 -
E
g ok A== ®=0 i
S A =0]|®_=>co
o o I
G(jo)
—0.51- N(A,@) o
-1
1 i I L
-1 05 o Real Axis 0.5 1 15

Figure: Graphical solution of the harmonic balance equation for system G(s)

Phase deficit is 90 grade. Finite time convergence!
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Conventional SMC: DF analysis

25
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Figure: Surface

Phase deficit is 90 grade. Finite time convergence!

Leonid Fridman Ifridman@unam.mx (UNAM)

Analysis of Sliding Mode Controllers in the Frequency

UNAM

14 / 56



Conventional SMC: DF analysis

Example of Real SMC UNAM
- Um]\» u .
<| > D(S;‘{) G(S)
1
Figure: Block diagram of a linear system with Real SMC
i ; 1 4Un
D(jw,d)G(jw) = TNA W) N(A w) = - (11)

D(jw, d) un-modelled dynamics
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Conventional SMC: DF analysis

Example of Real SMC

Plant

X1 = X
X2 = —x1— X2+ Us;
Actuator
0.01d, = —us + u;
Sliding surface
o = X1+ Xo;
Conventional SMC
u = —sign(o)

Transfer function
s+1

D(s:d)6(s) = Gots 7 (s 15+ 1)
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Conventional SMC: DF analysis

o

s~ -

®=0

Imaginary Axis
>
Y
8

A =0f o=

G(jo)

-1 -0.5 o Real Axis 05 1 15

Figure: Graphical solution of the HB eq for system D(s, d)G(s) plus 1lst order actuator

The phase dificit is 0. Only asymptotic converence.
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Conventional SMC: DF analysis

The phase dificit is 0. Only asymptotic converence.

Imginary A

Figure: Zoom

u}
)
I
il
it
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Conventional SMC: DF analysis

The phase dificit is 0. Only asymptotic converence. UNAM
25 T T T T T
<5 ols 3 115 ; y ; 315 n 4‘5 5
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Conventional SMC: DF analysis

Plant plus 2nd order actuator UNAM
xX1=x 0.0001id, = —0.01d, — us +u
Xo=—x1—Xx2+ Us ; o=x1+x
u = —sign(o)
0.5
A->co ®=0 B
1
= 4
05 o Roanfis i is

Figure: Graphical solution of the HB eq for system D(s,d)G(s) plus 2nd order actuator
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Conventional SMC: DF analysis

Plant plus 2nd order actuator

X1 =x2 0.0001i, = —0.01; —u, + u
Xo=—X1— X2+ U; ; o =x1+X
u = —sign(o)
; : : : ,
0.02|~ Ac=0.0127 b

coc=1 00(rad/sec)

Imaginary s

-0.01- -

-0.02~ -

-0.031- -
L L 1 L L I L
-12 -10 -8 -6 -4 -2
Real Axis 3

Figure: Zoom
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Conventional SMC: DF analysis

Plant plus 2nd order actuator

X1 =x2 0.0001i, = —0.01; —u, + u
Xo=—X1— X2+ U; ; o =x1+X
u = —sign(o)

L
o 05 4 15 2 25 3 35 4 45 5
Time (sec)

Figure: Surface
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Twisting and its DF

UNAM

Twisting Algorithm DF

X = u

4 .
= —asign(x) — csign(x), N(A) = N1 + sN> = ﬁ(cl + je2),

with ¢ > ¢ > 0.

Wys)
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Twisting and its DF

UNAM
Im
HB eq.
4 1
4 o) N(4)
0 —C1 Jje
W(jw) = 7A
(C +¢c3)’ aretgle, /e, ) el D w=0
Re
Wijw)
“w

The phase dificit is arctg(c>/c1). Finite-time convergence
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UNAM

Terminal Control Law and its DF

x107

|,
o=
~—~~
X,
=
.20
w0
o
X
2 Q
— +
° NI
m 2V
w0
O 3 %
— 5 | V
2 0
=] o
£ 2
o) =
o ox 3

x107

Re
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Super-twisting and its DF

UNAM
ST algorithm DF
X = u
= —,B|g|l/25ign(a) + us, N(A, w) = ?40‘ %7
us = —asign(o), R A

+
Wi(s)
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Super-twisting and its DF

UNAM

HB eq | E
3 .
S ‘ ;

(jw) = 22 = | S S S .o SO i
14130025 J £ A
- 4 :
e

I B R N

25 2 -5 -1 -05

-ReN'(4,0)
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Super-twisting and its DF

Existence of the periodic

solutions

Write HB eq. as: N(A) = — W~ (jw),

UNAM

A1
A jw VA

Consider the real part of both sides

A

Eliminating A from eqs. (14)-(15),

V(w) =

1 i1 - W (jw).

1.1128-2= = —Re W (jw
VA ()
4y 1 [ 1.1128)
mw Im W—1(jw) Re W—1(jw

Eq. (16) has ONLY one unknown variable, w.
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Super-twisting and its DF

UNAM
Existence of the periodic solutions
Once w is obtained from Eq. (16).
Amplitude, Ac can be computed as:
Ay 1
Ac = mwe Im W=1(jwe)" )
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Super-twisting and its DF

UNAM

Stability of periodic solution

If the following inequality holds then the periodic solution given by Equation (16) is
locally stable:

o (A w)aln — <0, (18)
ha(A,w) + N(A,w) 2 |,
where hi(A,w) = & 1;28)‘ J',MAz (A w) = mt’;A
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Super-twisting and its DF

UNAM

Stability of periodic solution
Proof:
@ Assume that the HB eq. holds for small perturbations.
o Damped oscillation of the complex frequency jw + (Ao + jAw) corresponds to the
modified amplitude (A + AA):
N(A+ AA, jw + (Ao + jAw))W (jw + (Ao + jAw)) = —1. (19)

N(A,w) is DF of Super-twisting.
o Find the conditions when A = Ao /AA is negative.
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Super-twisting and its DF

T TR A NAT

Stability of periodic solution
Proof(continue):

o Take the derivative of (19) with respect to AA and write an equation for the
amplitude perturbation AA.

dW (Ao, Aw)

{ dN(AA, Ao, Aw) Ao W(jw) + ="

dAA |AA:0N(A,L4))} ANA = 0. (20)

o Take derivatives of N and W, and consider them composite functions:

dN(AA, Ao, Aw)

4yw  L1128X | 49A (dAU -dA”). (21)

dAA a0 = 5 Yz \gratiara
aw _dw, (o diw 22)
dAAPA T s v \ GAA T aAA

@ Solve eq. (20) for(Zﬁ—f‘ +j‘;AT:) and taking account of (21) and (22), an analytical

formula is obtained, where the real part is (18).
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Is It Reasonable to Substitute Discontinuous SMC by
Continuous HOSMC?
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Motivation Example. Relative Degree One

UNAM

F
u u X
SMC s Actuator _’é_' Plant .
()

Plant Actuator

H(t) = [_‘L _1%} 20+ |1

a(t) =[1 0] z(t)

2} u(t)

x(t) = a(t) + F(t) m

Assumption 1

The parasitic dynamics (Actuator) is not required for the design of the SMC/HOSMC
gains and its effects can be measured through the ATC p.
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Considered SMC and Disturbances

Discontinuous
SMC

Bounded

Not Lipschitz

Continuous
SMC

&

Lipschitz Lipschitz

Disturbance form

where the upperbounds

IFl < «a
[Fl < af

are assumed known.

UNAM

F(t) = asin(Qt)

[
> &

Reasonable Comparison

FOSMC
u = —M:sign(x)
with M = 1.14.

Leonid Fridman Ifridman@unam.mx (UNAM)

Twisting Filter
0 = —cisign(x) — ¢ sign(x)

with ¢ = 2.3A, o = 1.1A

STA
u = —k1|x|1/2 sign(x) + v
v = —kssign(x)

with ki = 1.5AY2, k, = 1.1A.

Analysis of Sliding Mode Controllers in the Frequency
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Simulations Results for Some Values of ATC and Increasing Q

Q
1 10 100
Control
Discontinuous Control
w=10"1 1.366x 101 1.692x10~ 1 0.934x10~1
FOSMC | p =102 1.092x 102 1.361x 102 1.692x 102
w=10"3 1.064x1073 1.096x10~3 1.362x10~3
Continuous Control
w=10"1 1.243x10~ 1 8.663x10 1 6.4041
STA w=10"2 0.431x10~ % 1.302x10~2 8.694 %102
w=10"3 8.915x10~ 6 0.445x10° 1.343x10~3

Table: Sliding-Mode Amplitude Accuracy
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Discussion Aspects

UNAM

Professor V. Utkin Hypothesis

Simulations confirms that for any value of ATC there exist a bounded disturbance for
which the amplitude of possible oscillations produced by FOSMC is lower than the
obtained applying STA.

Hypothesis 2

It should exists a value of ATC for which the amplitude of chattering produced by
FOSMC and STA are the same.

Hypothesis 3

For any bounded and Lipschitz disturbance, the amplitude of possible oscillations
produced by STA may be less than the obtained using FOSMC if the actuator dynamics
is fast enough.
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Methodology

UNAM

The parameters that characterizes the chattering of the steady-state behavior of the
nominal system (F(t) = 0) are:

1. Amplitude of periodic motion (A)

2. Frequency of periodic motion (w)

3. Average power (P)

Dinamically
Perturbed
Systems

Describing
Function

—

Harmonic
Balance
Approach
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DF Analysis

UNAM

Assumption 2 (Low pass filter hypothesis)

The dynamically perturbed system (Actuator-Plant) W(s) has low pass filter
characteristics with respect to the higher harmonics of the output x(t). Hence the output
of the system converges to a periodic motion [Gelb (1968)], [Boiko (2009)], which can be
well-approximated by its first-harmonic,

x(t) = Asin(wt),
x(t) Aw cos(wt).
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Harmonic Balance Approach

UNAM

Parameters of a possible periodic motion, amplitude A and frequency w, can be found by
solving the Harmonic Balance equation (see for example [Gelb (1968)],
[Atherton (1975)])

N(A,w)W(jw) = -1

where N(A,w) is the DF of the non-linearity (SMC algorithm).
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Average Power Approach

UNAM

L,-chattering [Levant (2010)] Drawbacks
@ There is no chattering in ideal

T 1/p . .
chatt, (x) = (/ )-(p(T)dT> sliding-mode motion!
0 @ How to compute chatt;,?

A novel approach: Average (Real) Power

w = A%w 4A%w

I .
P= 7/0 a(r)x(r)dT = wl 2 sin(2wT)dT = -
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Preliminaries

UNAM
Let the dynamically perturbed system (actuator-plant)
1
W(s)= —
©) = s v 17
FOSMC Twisting Filter STA
. . . . = —ki|x|*?sign(x) +
u = —Msign(x) 0 = —cy sign(x) — ¢z sign(x) c _ —k:|s);!gn(x;g )
—_— y ’
Bl DF DF
2ai1 k 4k
aM 4 . N(A _ 2ak .4k
N(A) = 25 N(Aw) = —— (2 — jar) (Aw)=ar A
J ) with a3 = 1.748. )
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Chattering Parameters Estimated by HB

Twisting Filter

2¢;

A= 2

8 (ﬂﬁfﬂg—qr

Lo L <\/612+c22—c1
w

(e}

16¢;

)

)

P =yt
K <7r3(\/c12 +c - c1)5>

y

STA

A=

-
w==
L
P:/f(

=

2 (a%kf —i—47rk2)2

1/2
a2k? + 4mko >

UNAM

7ra1k1

gk

4(a2k? + 4rky)T/ 2)
meadk}
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Chattering Parameters as Function of p

| — FOSMC —— STA —— Twisting Filter

0.2 0.02

0.15 * 1 0015

Ha I

0.05 4 0.005

0.2 0.15 0.1 0.05 0 0.02 0.01 0
“ Zoom

I I I
0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0

0.2 0.03

0.02

0.01

0 - - 0
02 0.15 0.1 0.05 0 003 002 001 0
Zoom

m
Figure: Chattering Parameters as Function of ATC 4 — 0, with 6 = A = 1.

Leonid Fridman Ifridman@unam.mx (UNAM) Analysis of Sliding Mode Controllers in the Frequency 40 / 56



Amplitude Discussion

UNAM

Result 1

There exist a value of the ATC for which the amplitude of
oscillations caused by FOSMC is equal that the produced
by Twisting Filter,

= M(/EZ+3E—a)
1 4
©

Result 2

There exist a value of the ATC for which the amplitude of
oscillations caused by FOSMC is equal that the produced
by STA,
= 27 M(aki)?
2 ( (a1k1)2 + 4mko )2
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Frequency Discussion

Result 3

The frequency of oscillations
caused by STA is always
lower than the produced by
FOSMC.

Result 4

The frequency of oscillations
caused by Twisting Filter is
always lower than the
produced by FOSMC.
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Figure: Graphical Solution of HB equation
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Average Power Discussion

UNAM

Result 5

There exist a value of the ATC for which the average
power of oscillations caused by FOSMC is equal that the
produced by Twisting Filter,

. M/TFE - a)”
My =

7/2
%]

Result 6

There exist a value of the ATC for which the average
power of oscillations caused by FOSMC is equal that the
produced by STA,

= 271'M(a1k1)3/2
2 ( (0[11(1)2 + Arky )7/2
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Selection of STA Gains to Minimize the Amplitude of Chattering
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20 T T T T T T T T T
Minimum Amplitude for a given 18] [—4/w]]
k2 > A 16
1/2 141
ki = (“;—52) =2.028vk ol
1
o 10
ol
Proposed STA Gains' J
ky = 2.127VA af Y5800
ko =1.1A 2t
v 0 L L L L L L L L

L
0 0.5 1 15 2 25 3 3.5 4 4.5 5
k1

T Sufficient stability conditions are satisfied:

ki > 1.449VA
ke = 1.1A

Figure: Amplitude as Function of k;
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Selection of STA Gains Minimize the Average Power

100

Minimum Average Power for a given w0t
ky > A 80
1/2 70
k= (3;—?) = 1.756vk ol
1
o 50
i 40+
Proposed STA Gains' ol
ki = 1.842v/A af viorze
kQ == 11A 10
’ 00 0.5 1 15 2 2‘5 3 35 4 45 5

i
T Sufficient stability conditions are satisfied:

ki > 1.449V/A
ky = 1.1A

Figure: Average Power as Function of ki
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Motivation Example. Relative Degree Two

UNAM

F
u u X
SMC s Actuator _’é_' Plant .
()

Plant Actuator

H(t) = [_‘L _1%} 20+ |1

a(t) =[1 0] z(t)

2} u(t)

X(t) = a(t) + F(t) 7

Assumption 1

The parasitic dynamics (Actuator) is not required for the design of the SMC/HOSMC
gains and its effects can be measured through the ATC p.
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Considered SMC and Disturbances

Discontinuous
SMC

Bounded
&
Lipschitz

Not Lipschitz

Lipschitz

Reasonable Comparison

Twisting CTA
u = —c sign(x) — ¢ sign(x) 5

with ¢ = 2.36, o = 1.16.

Continuous
SMC

UNAM

Disturbance form
F(t) = asin(Qt)

where the upperbounds

|
o

IFl < «
IFl < aQ =

are assumed known.

—ka|x|*? sign(x) — ko|x|/? sign(x) + v
—ks sign(x) — ka sign(x)

with k1 = 1.5A%3, k, = 23AY?, ks = 1.1A, ks = 0.
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Average Power Approach

UNAM

L,-chattering [Levant (2010)] Drawbacks
@ There is no chattering in ideal

T 1/p . .
chatt, (x) = (/ )-(p(T)dT> sliding-mode motion!
0 @ How to compute chatt;,?

A novel approach: Average (Kinetic) Power

_1 T.2 _UJ 2% 2 2 2 _A2w2
P_?/OX(T)dT_E/O Aw® cos™(wr)dT = 5
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Preliminaries

UNAM
Let the dynamically perturbed system (actuator-plant)
1
W)= ————=
)= aus 1y
Twisting CTA
s e 18 u = —ki|x|*?sign(x) — ko|x|"/?sign(x) + v
u = —cusign(x) — c2sign(x) v = —kssign(x) — kasign(x)
DF DF
4 ) 201ki  Aks . [200kw'/? 4k
= — N(A = —
N(4) TA (e +je2) (4,%) TA23 | mAw + TAL/2 AW
“ With ay = 1.821, oy — 1.748.
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Chattering Parameters Estimated by HB

UNAM
Twisting CTA with k4 =0
p . ( 26 ) Solve the non-linear equality for the frequency w,
=u
(Ve +¢ —a) ks 1 2w/ ks 1— 12232 — 9
W( - pw) _W( —pw) =2uw

w_1<\/6f+c22—c1> ! '
I

@ Then, substitute on the amplitude expression,

3/2
P =y 2 A= [220471/%2]
(/& + G - a St

v

Leonid Fridman Ifridman@unam.mx (UNAM)  Analysis of Sliding Mode Controllers in the Frequency 50 / 56



Chattering Parameters

as Function of p

— Twisting — CTA

I
100 T T T T
3 50 1
0.25 0.2 0.15 0.1 0.05 0
1

1L
Figure: Chattering Parameters as Function of ATC p — 0, with § =1, A = 10.
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Amplitude Discussion

UNAM

Result 1

There exist a value of the ATC for which the amplitude of
oscillations caused by Twisting is equal that the produced
by CTA. For the example

w =02
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Frequency Discussion

Result 2

The frequency of oscillations
caused by Twisting is always
lower than the produced by
CTA.
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Figure: Graphical Solution of HB equation
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Average Power Discussion

UNAM

Result 3

There exist a value of the ATC for which the average
power of oscillations caused by Twisting is equal that the
produced by CTA. For the example

©* = 0.093
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