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Conventional Sliding Mode Observers

Observer Purpose: To estimate the unmeasurable states of a system based
only on:

the measured outputs and inputs;

mathematical model of the system, driven by the input of the system
together with a signal representing the difference between the
measured system and observer outputs

First Observer: Luenberger

Drawbacks of Luenberguer Observer in the presence of uncertainties

(a) Unable to force the output estimation error to zero
(b) The observer states do not converge to the system states

Solution: sliding mode observer if the uncertainties are bounded.

Advantages:

(a) Force the output estimation error to converge to zero in finite time
(b) Observer states converge asymptotically to the system states
(c) Disturbances can be reconstructed
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Observer of Utkin (reduced order SM observer)

Consider a nominal linear system

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) (2)

Assume C has full row rank

Necessary and sufficient condition: (A,C ) is observable

Observability condition will be assumed to hold.
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Coordinate transformation x 7→ Tcx

Tc =

[
C⊥

C

]
(3)

where Nc ∈ Rn×(n−p) spans the null-space of C .

By construction det(Tc) 6= 0

Applying the change of coordinates

TcAT
−1
c =

[
A11 A12

A21 A22

]
, TcB =

[
B1

B2

]
, CT−1c =

[
0 Ip

]
(4)

where A11 ∈ R(n−p)×(n−p) and B1 ∈ R(n−p)×q.
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Assume the system (1) and (2) is already in the form of (4)

Utkin proposed observer:

˙̂x(t) = Ax̂(t) + Bu(t) + Gnν (5)

ŷ(t) = Cx̂(t) (6)

where (x̂ , ŷ) are the estimates of (x , y) and ν is a discontinuous
injection term.

Define e(t) := x̂(t)− x(t) and ey (t) := ŷ(t)− y(t)
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Term ν is defined component-wise as

νi = ρsign(ey ,i ), i = 1, 2, ..., p (7)

where ρ is a positive scalar and ey ,i represents the ith component of
ey . (It could be ν = ρe/||e||).

ν is designed to be discontinuous with respect to the sliding surface
S = {e : Ce = 0} pto force the trajectories of e(t) onto S in finite
time.

Gain Gn

Gn =

[
L
−Ip

]
(8)

where L ∈ R(n−p)×p represents the design freedom.
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Error system ė(t) = Ae(t) + Gnν

Partitioning e = col(e1, ey ), with e1 ∈ Rn−p

ė1(t) = A11e1(t) + A12ey (t) + Lν, ėy (t) = A21e1(t) + A22ey (t)− ν

Component-wise ėy ,i (t) = A21,ie1(t) + A22,iey (t)− ρ sign(ey ,i ) where
A21,i and A22,i represent the ith rows of A21 and A22

Equivalent injection νeq = A21e1(t)

Sliding dynamics ė1(t) = (A11 + LA21)e1(t)→ Reduced Order
Luenberger Observer
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LTI systems with unknown inputs

The system

Consider

Σ :

{
ẋ = Ax + Bu + Dw , x(0) = x0,
y = Cx ,

(9)

where

x(t) ∈ Rn is the state, w(t) ∈ Rm is the unknown input;

u(t) ∈ Rq is the control, y(t) ∈ Rp is the measured output.

Strong Observability:

The system is strongly observable if for any x(0) and w(t) it follows from
y(t) ≡ 0 ∀ t ≥ 0 that x(t) ≡ 0 [Hautus: 83].

Strong Detectability:

The system is strongly detectable if for any x(0) and w(t) it follows from
y(t) ≡ 0 ∀ t ≥ 0 that x(t)→ 0 as t → 0 [Hautus: 83].
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LTI systems with unknown inputs

Invariant zeros

The Rosenbrock of (A, C , D):

R(s) =

[
sI − A −D
C 0

]
.

The values s0 ∈ C such that rank R(s0) < n + m are called invariant zeros
of (A, C , D).
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LTI systems with unknown inputs

State reconstruction without differentiation[Hautus: 1983]

The system does not have invariant zeroes.

All the matrices are known i.e.,A, B, C , D.

C and D are full rank matrices.

If rank(C ) = p and rank(D) = m, then p ≥ m.

rank(CD) = m Relative degree 1 condition.

Walcot-Zak Observes: Canonical form

 dy⊥/dt
dy1/dt
dy2/dt

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 y⊥

y1
y2

+ Bu +

 0
0

w(t)
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Fig. 4. Precision of [rad] using OISMC applying a (left) first-order
HOSM differentiator and a (right) second-order HOSM differentiator.

• two robust output feedback control strategies were com-
pared:
— continuous compensation control based on the es-

timated states and the compensation of identified
unknown inputs (EOFS);

— output integral sliding mode control based on estimated
states (OISMC).

• a methodology is suggested for the selection of an ap-
propriate controller based on the comparison of both con-
trol strategies considering the accuracy of observation and
identification algorithms as well as the actuator time con-
stant;

• the proposed methodology is experimentally validated in
an inverted rotary pendulum system.
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Mechanical system

Let us consider the following mechanical system:

M(q)q̈ + C (q, q̇)q̇ + P(q̇) + G (q) + ∆(t, q, q̇) = τ

State space form x1 = q, x2 = q̇, u = τ

ẋ1 = x2,

ẋ2 = f (t, x1, x2, u) + w(t, x1, x2); y = x1

Relative degree condition(linearized case)

C = [1 0], D =

[
0
1

]
, CD = 0.

Remark:

When the relative degree of w(t) w.r.t. y(t) is higher than one, i.e.
rank(CD) < m, output differentiations are necessary.
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A simple observer for Mechanical Systems

Formulation of the problem:

Estimate the velocity using the position, under the hypothesis of bounded
acceleration.

ẋ1 = x2, ẋ2 = f (x1, x2, t) + w , y = x1.

A simple observer [Davila et.al. 05].

The observer

˙̂x1 = −1,5
√
L|y − x̂1|

1
2 sign(y − x̂1) + x̂2,

˙̂x2 = f (x1, x̂2, t)− 1,1L sign(y − x̂1),

|f (x1, x̂2, t)− f (x1, x2, t) + w | < L

finite-time estimation of x2, i.e., x̂2(t) = x2(t),∀t ≥ T ;

the best precision in the sense of [Kolmogorov:62]. 18
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Single Unknown Input- Single Output Case

Strong Observability - Invariant Zeros Relation

Strong observability requires that for any input w , the equality y ≡ 0
implies x ≡ 0. The existence of invariant zeros s0 implies the existence of
inputs w(s0) such that y ≡ 0 for x 6= 0

Absence of invariant zeros is sufficient and necessary condition for
strong observability(Haustus,1983)
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Single Unknown Input- Single Output Case

Strong Observability - Relative Degree Relation

Taking the first n − 1 derivatives of the output

y = Cx

ẏ = Cẋ = CAx(t) + CDw
...

y (n−1) = CAn−1x + CAn−2Dw + ...+ CDw (n−2)

Relative degree n is required

to obtain a set of n equations independent on w :
CD
CAD

...
CAn−2D

 =


0
0
...
0
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Single Unknown Input- Single Output Case

Invariant zeros - Relative Degree Relation

Rosenbrock matrix for the tuple (A, C , D):

R(s) =

[
sI − A −D
C 0

]
.

Determinant of the Rosenbrock matrix
det(R) = (sn−1 + ans

n−2 + ...+ a2)CD+
(sn−2 + ans

n−3 + ...+ a3)CAD + ...+ (s + an)CAn−2D + CAn−1D

Relative degree n is necessary:

The determinant does not dependent on s iff: CD
...

CAn−2D

 =

 0
...
0
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Methodology

The Unknown Input Observer (UIO) design problem for strongly observable
systems is reduced to evaluate in real-time derivatives of the output.

The k-th order HOSM differentiator for yj

ż0 = ν0 = −λkL
1

k+1 |z0 − yj |
k

k+1 sign(z0 − yj) + z1,

ż1 = ν1 = −λk−1L
1
k |z1 − ν0|

k−1
k sign(z1 − ν0) + z2,

...

żk−1 = νk−1 = −λ1L
1
2 |zk−1 − νk−2|

1
2 sign(zk−1 − νk−2) + zk ,

żk = −λ0L sign(zk − νk−1),

(10)

λ0 = 1,1, λ1 = 1,5, λ2 = 2, λ3 = 3, λ4 = 5, λ5 = 8.

Convergence of the HOSM differentiator [Levant:03].

If the gain L satisfies L > |y (k+1)
j (t)| for all t, then zi = y

(i)
j after

finite-time.
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Uniform Robust Exact First-Order Differentiator [Cruz et. al. 11].

ż0 = −k1φ1(z0 − yj) + z1, ż1 = −k2φ2(z0 − yj),

where
φ1(σ0) := dσ0c1/2 + dσ0c3/2,
φ2(σ0) := 0,5 sign(σ0) + 2σ0 + 1,5dσ0c2.

and dvcp := |v |p sign(v).

Remarks.

the differentiator is uniform with respect to the initial differentiation
error;

this means that the resulting observer converges in prescribed time;

useful for systems with strictly positive dwell-time;

arbitrary order uniform exact differentiator [Angulo et al.:
Automatica].

24



3

and C1, C2, C3, and C4 are positive constants independent of the
initial conditions.

Proof: Appendix B.
Since the high-degree terms of the URED are stronger than the

low-degree ones far from the origin, they are responsible for a faster
convergence, and provide for the uniform convergence to a compact
set �c

" containing the origin, as shown in Proposition 4. On the other
hand, Proposition 3 ensures the exact convergence of system (3) to
the origin, despite of the bounded perturbation

���f̈0 (t)
��� < L, a fact

that is due to the low-degree terms, which are stronger than the high-
degree ones in a neighborhood of the origin. Both Propositions 3 and
4 together guarantee that the differentiator error (3) is uniformly exact
convergent, for f̈0 bounded, so that the convergence time of every
trajectory can be bounded by the same constant.

IV. CONVERGENCE TIME ESTIMATION

Once µ > 0 and the gains (k1, k2) have been selected, according
to Theorem 2, (9) provides a convergence time estimation for the
differentiator, that grows unboundedly with the norm of the initial
differentiator error. However, (11) shows that any trajectory of the
same algorithm converges uniformly to the level set �c

", i.e. in
a time bounded by the same constant, independent of the initial
condition. Combining both time estimations, an upper bound T for
the convergence time of any trajectory of (3) is given by

T  4�
1
2
max {P}

✏
⌘

1
2 + 12 (2C2)

7
6

✓
1

"

◆ 1
6

, (12)

where " � C1

⇣
2C3 + 2

p
C4 + C2

3

⌘3

, and the values of
C1, · · · , C4, ✏ and P are calculated as described in Appendices A
and B. Moreover, the value of ⌘ is selected, such that ⇤2," ⇢ ⌦1,⌘ ,
where ⇤2," = {� | V2 (�) = "} is a level surface of V2 (�), and
⌦1,⌘ = {� | V1 (�)  ⌘} is a level set of V1 (�). ⇤2," ⇢ ⌦1,⌘ can
always be satisfied choosing ⌘ large enough.

An appropriate value of ⌘ can be calculated in the following form:

Choose ! >
⇣

1
C1

"
⌘ 1

3 , so that the homogeneous ball Bh,! =n
� | k�kr,p  !

o
� ⇤2,", where k·kr,p is an homogeneous norm

defined in Appendix B. Now, a value ⌫ has to be found, such that
B⌫ =

�
� | k⇣k2  ⌫

 
� Bh,! , where k⇣k2

2 = |�0| + 2µ |�0|2 +

µ2 |�0|3 + �2
1 . This can be calculated by finding the maximum

value of k⇣k2 on the boundary of Bh,! . By simple calculus for
this maximum, k⇣k2

2 max = max
�
⇢
�
|�0|1

�
, ⇢
�
|�0|2

� 
, where

⇢ (|�0|) = (µ |�0| + 1)2 |�0| +
⇣
!

2
7 � |�0|

7
2

⌘ 6
7 , |�0|1 = !

4
49 , and

|�0|2 is the only positive real root of

⇣
!

2
7 � |�0|

7
2

⌘
=

 
|�0|

5
2

(µ |�0| + 1)
�
µ |�0| + 1

3

�
!7

.

Finally, selecting ⌫ > k⇣k2 max the required value of ⌘ is given by
⌘ = �max {P} ⌫2.

Remark 5: Note from (12) that the prescribed time of the URED
is a constant, and it can be made arbitrarily small selecting the gains
k1 and k2 properly.

V. SIMULATION EXAMPLE

We compare the URED with Levant’s robust differentiator [5].
For the simulation a value of µ = 1 has been set for the URED
and µ = 0 for Levant’s differentiator. The base signal to be
differentiated is f0 (t) = 5t + sin t with two different noise terms:
v1 (t) = 0.01 cos 10t, and v2 (t) = 0.001 cos 30t. With L = 2.5
appropriate values for the gains are k1 = 2

p
3, k2 = 6 (see

(4)) and two initial conditions for the output signal z(0) = 0 and
z(0) = [10 , 0]T are taken. The results are shown in the Fig. 1.
Both differentiators have robust and exact convergence. However,

Fig. 1. The URED (continuous line) and Levant’s robust exact differentiator
[5] (dotted line)

as shown in Fig. 2, the convergence time of Levant’s differentiator
[5] grows unboundedly with the norm of the initial condition, while
the convergence time of the URED is asymptotically bounded by
a constant for growing initial condition’s norm. This prescribed
convergence time can be estimated by the expression (12).
1) Selecting (see Appendix) � = 1.22228, we have �̄m = 2.14039,

Fig. 2. Convergence time of both differentiators by growing initial condition
norm for f(t) = 5t + sin t + 0.01 cos 10t.

�̄M = 0.361173, ⇠ = 2.74119, C1 = 0.398254, C2 = 3.68254,
C3 = 22.1792, C4 = 20.4383 and, consequently, " = 286752 and
T2 (") = 15.1811.
2) Find P = P T > 0 and ✏ > 0 such that (6) is satisfied. This
happens for

A =


�3.4641 1

�6 0

�
, P =


10.4315 �2.7068
�2.7068 2.0680

�
,

Limited circulation. For review only
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Figura: Convergence time of the Uniform Robust Exact Differentiator (URED).
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Arbitrary Order Uniform HOSM differentiator [Angulo et.al: 13,
AUtomatica].

Given a signal yj(t) to be differentiated (n − 1)-times, the differentiator

˙̂xi = −λidyj − x̂1c
n−i
n − kidyj − x̂1c

n+αi
n + x̂i+1, i = 1, . . . , n − 1,

˙̂xn = −λn sign(yj − x̂1)− kndyj − x̂1c1+α, (11)

with {λi}ni=1 chosen as Levant’s, α > 0 small enough and {ki}ni=1 such
that the polynomial

P(s) = kns
n−1 + kn−1s

n−2 + · · ·+ k2s + k1, is stable

provides:

uniform finite-time estimation, i.e., ∃T independent of |x̂i (0)+
−y i−1j (0)|, i = 1, . . . , n, such that

x̂i (t) = y
(i−1)
j (t), ∀t ≥ T , i = 1, . . . , n;

the best precision under measurement noise [Kolmogorov:62]. 26
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LTI systems with unknown inputs

The system

Consider

Σ :

{
ẋ = Ax + Bu + Dw , x(0) = x0,
y = Cx ,

(12)

where

x(t) ∈ Rn is the state, w(t) ∈ Rm is the unknown input;

u(t) ∈ Rq is the control, y(t) ∈ Rp is the measured output.

Relative degree

The integer r such that

ciA
jD = 0, j = 0, ..., ri − 2, ciA

ri−1D 6= 0,

ri ≤ n − 1

where ci is the ithm row of C .
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Observers for LTI systems with unknown inputs

Cascaded HOSM observer [Fridman et al. 2007]

Observer for the strongly observable case and
∑m

i=1 ri = n

ż = Az + Dw + L(y − Cz),
v̇ = W (y − Cz , v),
x̂ = z + Kv

(13)

L ∈ Rn is the correction term chosen such that A− LC is Hurwitz;

for i=1, ..., m:

K−1 =

 P1
...

Pm

 , Pi =

 ci
...

ci (A− LC )n−1

 ;

.

W (·) is a nonlinear HOSM term.
29



Observers for LTI systems with unknown inputs

Cascaded HOSM observer [Fridman et al. 2007]

Nonlinear HOSM term W T = [ v1 v2 ... vn ]

v̇1 = w1 = −αnN
1/n|v1 − (y − Cz)|(n−1)/nsign(v1 − (y − Cz)) + v2

v̇2 = w2 = −α(n−1)N
1/(n−1)|v2 − w1|(n−2)/(n−1)sign(v2 − w1) + v3

...

v̇n−1 = wn−1 = −α2N
1/2|vn−1 − wn−2|1/2sign(vn−1 − wn−2) + vn

v̇n = −α1Nsign(vn − wn−1)
(14)

where N > |C (A− LC )n−1Dw(t)|.
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Observers for LTI systems with unknown inputs

Canonical form of the estimation error x − z

The form is composed for Brunovsky blocks.
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Observers for LTI systems with unknown inputs

HOSM Observer [Fridman et al. 2007]

Advantages:

1 Finite-time theretically exact observation of the system states

2 The cascade structure of observer aloows to use any pre-filters or
stabilizers

Question

What can we do when the system is strongly observable but
∑m

i=1 ri < n?
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Weakly unobservable subspace

Invariant zeros

The Rosenbrock of (A, C , D):

R(s) =

[
sI − A −D
C 0

]
.

The values s0 ∈ C such that rank R(s0) < n + m are called invariant zeros
of (A, C , D).

The weakly unobservable subspace V∗

A state x0 ∈ X is called weakly unobservable, if there exist an input w
such that the corresponding output yw (t, x0) = 0 for all t ≥ 0. The set of
all the weakly unobservable points is denoted by V∗ and it is called the
weakly unobservable subspace of the system.
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Molinari Decoupling Algorithm [Molinari: 1976]

The Molinari’s algorithm

The algorithm is given as follows:

Step 0: Let i = 0 and M0 = 0 (a null dimension matrix).

Step 1: Compute Γi =

[
MiD MiA

0 C

]
, Find Ti such that Γi is

reduced to

TiΓi =

[
Gi+1 Hi+1

0 Mi+1

]
,

where Gi+1 has full row rank.

Step 2: Let i = i + 1 and back to Step 1.

Remark

The algorithm ends when rank Mi = rank Mi+1. The matrix Mi , for which
the equality was satisfied, is denoted by Mn.
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Molinari Decoupling Algorithm [Molinari: 1976]

Theorem

ker Mn = V∗

Importance of the Molinari’s algorithm

The algorithm gives an explicit algebraic relation between the output, and
its derivatives, and the state.

v(y , ẏ , ..., y (n)) = Mnx (15)

Relations for strong observability

i) The system is strongly observable;

ii) the triplet (A,C ,D) does not have invariant zeros;

iii) V∗ contains only the zero vector, i.e. V∗ = {0}.
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Observers for LTI strongly observable systems with
unknown inputs

Canonical form

Let
∑

i=1mri = rp < n. The canonical form is composed by Brunovsky
blocks and a w dependent block.
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Observers for LTI strongly observable systems with
unknown inputs

Observer in [Fridman et al. 2007]

X The states are estimated exactly after finite time;

X The cascade structure of observer allows to use a pre-filter.
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Strong detectability

Question

If the system is not strongly observable, but strongly detectable, can we
design an observer?

Relations for strong detectability

i) The system is strongly detectable;

ii) the triplet (A,C ,D) is minimum phase, i.e. the invariant zeros of the
triplet (A,C ,D) satisfy Re s < 0;

iii) all the trajectories belonging to V∗ converges to zero asymptotically.
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Observers for strongly detectable LTI systems

A canonical form.

ẋ =

 A11 D1A12 D1A13

A21C1 A22 0
A31C1 A32C2 A33

 x +

 D1

0
0

w ,

y =

[
C1 0 0
0 C2 0

]
x ,

1 the triplet (A11,C1,D1) is strongly observable;

2 the pair (A22,C2) is observable;

3 A33 is stable (i.e. the invariant zeros of the system).
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Observers for strongly detectable LTI systems

An observer [Fridman et al. 2011]

x1 can be recovered using y1 and its derivatives (strong observability);

x2 is estimated asymptotically using Luenberger observer because it is
not contaminaited

˙̂x2 = A21y1 + A22x̂2 + L2C2(x2 − x̂2);

for x3 a copy of the system without injection (A33 is stable)

˙̂x3 = A31y1 + A32y2 + A33x̂3.

Remarks.

it turns out that every strongly detectable (linear) system can be
written in the previous form [Moreno:01];

strong detectability [Hautus:83] is equivalent to the asymptotic
distinguishability of the state trajectory from the output [Moreno:01]
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Question

What happens when the system is not strongly observable. Is still possible
to do something?

41
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Functional Unknown Input Observers

Problem formulation

Given a linear system Σ, estimate a linear combination z = Ex using only
output measurements.

Motivation

in many output based control problems, it is not necessary to
estimate the whole state but a linear combination Kx ;

this is particularly true for output based sliding-mode control: only the
the surface is required;

despite a UIO does not exist (i.e. the system is not strongly
detectable), the required functional UIO may exist.
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Theorem. [Sanuti and Saberi: 87]

Every linear system, with p ≥ m, can be written as

ẋ =


A11 D1A12 D1A13 D1A14

A21C1 A22 0 0
A31C1 A32C2 A33 0
A41C1 A42C2 0 A44

 x +


D1

0
0
0

w ,

y =

[
C1 0 0 0
0 C2 0 0

]
x , z =

[
E1 E2 E3 E4

]
x ,

and the following properties hold:

1 (A11,C1,D1) is strongly observable and (A22,C2) is observable;

2 A33 are the stable invariant zeros and A44 the unstable ones.

Remark. [Angulo et.al: JFI14]

A functional UIO exists iff E4 = 0.
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Observer for nonlinear system with unknown inputs

MIMO locally stable system [Fridman et al.: 2008].

Consider
ẋ = f (x) + g(x)ϕ(t), x(0) = x0,
y = h(x),

(16)

where

x(t) ∈ Rn is the state, ϕ(t) ∈ Rm is the disturbance;

y(t) ∈ Rm is the measured output.

Formulation of the problem:

Estimate of x(t) and ϕ(t) based on output measurements only y(t).

Assumption

The system is locally weakly observable
The system is BIBS
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Observer for nonlinear system with unknown inputs

Coordinate transformation.

New coordinates

ξi =


ξi1
ξi2
...
ξiri

 =


hi (x)
Lf hi (x)

...

Lri−1f hi (x)

 , i = 1, ...,m; r = r1 + ...+ rm

ξ =

 ξ1

...
ξm

 ; η =

 η1
...

ηn−r


Local diffeomorphism.

There exist a local diffeomorphism such that

x = Φ−1(ξ, η)

.
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Observer for nonlinear system with unknown inputs

Transformed system.

New coordinates

ξ̇i = Λiξ
i + ψi (ξ, η) + λi (ξ, η, ϕ(x))

η = q(ξ, η)

where

Λi =


0 1 0 · · · 0
0 0 1 · · · 0
... · · ·

...
0 0 0 · · · 0

 , Φi =


0
0
...

Lrif hi (x)



λi =


0
0
...∑m

j=1 LgiLf
ri−1hi (x)ϕ(x)j

 , ∀ i = 1, ...,m
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Observer for nonlinear system with unknown inputs

State estimation [Fridman et al.: 2008].

HOSM Differentiator

v̇ i0 = w i
0 = −αriN

1/ri |v i0 − yi |(ri−1)/ri sign(v i0 − yi ) + v i1
v̇ i1 = w i

1 = −α(ri−1)N
1/(ri−1)|v i1 − w i

0|(ri−2)/(ri−1)sign(v i1 − w i
0) + v i2

...

v̇ iri−1 = w i
ri−1 = −α2N

1/2|v iri−1 − w i
ri−2|

1/2sign(v iri−1 − w i
ri−2) + v iri

v̇ iri = −α1Nsign(v iri − wri−1)
(17)

Estimation by construction

ξ̂11 = v10 , ... ξ̂1r1 = v1r1−1,
˙̂
ξ1r1 = v1r1 ,

...

ξ̂m1 = vm0 , ... ξ̂mr1 = vmr1−1,
˙̂
ξmr1 = vmr1 ,

(18)

˙̂η = q(ξ̂, η̂) 49



Observers for systems with unknown inputs

The system

Consider

Σ :

{
ẋ = f (x) + g(x)w , x(0) = x0,
y = h(x),

(19)

where

x(t) ∈ Rn is the state, w(t) ∈ Rm is the unknown input;

y(t) ∈ Rp is the measured output.

Formulation of the problem:

Estimate x(t) based on output measurements only {y(t), t ∈ [0,T ]}.

Remark.

When the relative degree of y is higher than one, output differentiations
are necessary [Hautus: 83].
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Observers for systems with unknown inputs

Definition: Strong Observability. [Angulo et. al.: Automatica 13
(8)]

Σ is strongly observable if there exists a function F and integer k such that

x = F (y , ẏ , · · · , y (k)).

equivalent to the distinguishability of the state trajectory using only
the output when f , g and h are meromorphic [Angulo et.al: 10];

also equivalent when Σ is linear [Hautus: 83]. In such a case, F is
linear and therefore

x =
dk

dtk
M

 y∫ t
0 y(s)ds

...

 , M is a matrix. (20)

function F or matrix M can be computed using an algorithm [Angulo
et. al: 10, Bejarano et.al.: 11, Davila et.al:10].
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Further remarks.

since the HOSM differentiators will estimate x , each individual gain
Lj should satisfy

Lj > |ẋj | = |fj(x) + gj(x)w |

for general nonlinear systems, the use of the HOSM differentiator is
thus restricted to stable systems with bounded unknown inputs;

for linear systems, the requirement of stability of the system can be
circumvented using a Luenberger observer first [Bejarano et.al.: 10];

analogously, an internal model for the unknown input can also be
used to relax the requirement of bounded unknown inputs [Bejarano
et.al: 10].
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Unknown input identification

Problem formulation.

Given

Σ :

{
ẋ = f (x) + g(x)w , x(0) = x0,
y = h(x),

(21)

estimate the input w(t) using only the measured output.

Motivation.

when w is used to represent a disturbance, its estimate can be used
for robust control [Ferreira et.al. CST: 11];

when w is parametric uncertainty, its estimate can be used to
estimate the unknown parameters [Davila et.al.:10];

finite-time parameter estimation using Super-Twisting [Guzman et.al.:
CTA TIE 2015, Gustavo Rueda 2016,2017.
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Unknown input identification

Definition: static left-inverse.

Σ has a static left-inverse if there exists a function G and integer k such
that

w = G (y , ẏ , · · · , y (k)).

Remarks.

if Σ is strongly observable and rank g = m then Σ has a static
left-inverse [Angulo et.al: Automatica,13(8)];

however, neither strong observability nor strong detectability are
necessary for Σ to have a static left-inverse (see, e.g., [Bejarano et.
al.: SIAM 09] ).
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Unknown input identification

Recall the canonical form

ẋ =


A11 D1A12 D1A13 D1A14

A21C1 A22 0 0
A31C1 A32C2 A33 0
A41C1 A42C2 0 A44

 x +


D1

0
0
0

w ,

y =

[
C1 0 0 0
0 C2 0 0

]
x ,

Theorem. [Bejarano et. al: 09]

obviously w can be estimated iff x1 can be estimated and
rankD1 = m;

it is not necessary strong observability nor strong detectability;

the system has a static left-inverse if and only if the invariant zeros
that do not belong to the set of unobservable eigenvalues are stable.
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Output-feedback stabilization of disturbed systems

ẋ = Ax + B[u + w ], y = Cx .

First approach. [Ferreira et. al.: 10]

Use HOSM observers to estimate in finite-time:

the unknown input w , and then remove it using control

u = −ŵ + v ;

the state x to construct the nominal control v = Kx̂ .

Remarks: when to use or not SM in the control? [Ferreira et. al.: 10]

identification error � execution error: remove perturbation by
identification;

execution error � identification error: use SM directly;
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ẋ = Ax + B[u + w ], y = Cx , ‖w(t)‖ ≤W1‖x(t)‖+ W2.

Second approach. [Angulo et.al.: 11]

under strong observability, use a HOSM observer to estimate x in
finite-time;

by controllability there exists an output ζ(t) ∈ Rm (not necessary the
measured one) with vector relative degree;

using ζi and its derivatives, write the system as m integrator chains;

use (non-homogeneous) HOSM controllers to obtain (robust)
finite-time state stability

vi = −αi (ki ,1‖x‖+ ki ,2)Hri (ζi , ζ̇i , · · · , ζ
(ri−1)
i ), i = 1, . . . ,m,

Hri is a ri -th order SM algorithm, e.g.,

H2(ζi , ζ̇i ) :=
ζ̇i + β|ζi |

1
2 sign ζi

|ζ̇i |+ β|ζi |
1
2

.
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Output-feedback stabilization of disturbed systems

Moreover

the previous requirement of a measured output with vector relative
degree is not necessary;

robust finite-time stabilization of the whole state: useful for switching
systems [Angulo and Levant: IJSS11];

the same idea can be used for strongly observable nonlinear systems
that are flat (not necessarily w.r.t. the measured output) [Angulo et.
al.: AUTOMATICA,2013,NO.9 ];

adapt the gain of the differentiator and control: reduce chattering;

Separation Principle: (robust) on-line detection of the convergence of
the differentiators;

until now, this was done by waiting enough time.
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Fault detection using multi-model approach

The system with fault

ẋ = f (x) + Bu + Fi (x , u), i = 1, . . . , q
y = h(x)

(22)

where

x(t) ∈ Rn is the continuous state;

u(t) ∈ Rm is a known input;

y(t) ∈ Rp is the measured output;

Function and matrix (f ,B) are known;

Fi (x , u) are faults (known a-priori) defined by:

Fi (x , u) ∈ F , where F = {F1(x , u), . . . ,Fq(x , u)}

i.e. q faulty cases that change the system properties (plant faults)
or/and the dynamical input properties of the system (actuator faults).
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Fault detection using multi-model approach

Problem statement

Given {y(s), s ∈ [0, t]} identify and isolate the q possible faults (FDI).

Main idea: use q HOSM Observers as multi-models and the equivalent
injection to carry out FDI.

Proposed Solution (H. Ŕıos et al. IJRNC 2014)

HOSM differentiator applied to the estimation error dynamics;

Finite-time reconstruction of continuous state;

Fault detection and isolation using Equivalent Injection;
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Conclusions

HOSM Observers
provide theoretically exact observation and unknown inputs and fault
estimation under sufficient and necessary conditions of the strong
observability/ detectability of states or unknown inputs or faults;

provide best possible approximation w.r.t. discretization step and/or
bounded deterministic noises:

can ensure prescribed time convergence independent from any initial
conditions.
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