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Jaime A. Moreno

Universidad Nacional Autónoma de México
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Di↵erential Inclusions (DI)

Consider a dynamical system

ẋ = f(x) .

We know that

If f(x) discontinuous according to Filippov we obtain a DI

ẋ 2 F (x) , F (x) ⇢ Rn .

If f(x) is uncertain, i.e. kf(x)k  f+ we can write

ẋ 2 ⇥�f+, f+

⇤) ẋ 2 F (x) .

In case of discontinuity or/and uncertainty we obtain a
Di↵erential Inclusion from a Di↵erential Equation
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Filippov Di↵erential Inclusions (DI)

ẋ 2 F (x)

is Filippov DI if 8x 2 Rn, the set-valued function F (x) ⇢ Rn is

not empty;
compact;
convex;
upper-semicontinuous, i.e.

lim
y!x

sup [{dist(z, F (x))|z 2 F (y)}] = 0

where
dist(x, A) = inf {|x� a||a 2 A} .

A solution x(t) is an absolutely continuous function
satisfying the DI almost everywhere.
Filippov DI have the usual properties, except for
uniqueness.
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ẋ 2 F (x)

is Filippov DI if 8x 2 Rn, the set-valued function F (x) ⇢ Rn is

not empty;
compact;
convex;
upper-semicontinuous, i.e.

lim
y!x

sup [{dist(z, F (x))|z 2 F (y)}] = 0

where
dist(x, A) = inf {|x� a||a 2 A} .

A solution x(t) is an absolutely continuous function
satisfying the DI almost everywhere.
Filippov DI have the usual properties, except for
uniqueness.

Lyapunov SMC Jaime A. Moreno UNAM 7



Filippov Di↵erential Inclusions (DI)
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Higher Order Sliding Mode (HOSM)

Consider a Filippov DI ẋ 2 F (x), with a smooth output
function � = �(x). If

1 The total time derivatives �, �̇, . . . , �(r�1) are continuous
functions of x

2 The set
� = �̇ = . . . = �(r�1) = 0 (1)

is a nonempty integral set (i.e., consists of Filippov
trajectories)

3 The Filippov set of admissible velocities at the r-sliding
points (1) contains more than one vector

the motion on the set (1) is said to exist in an r -sliding
(rth-order sliding) mode. The set (1) is called the r-sliding set.
The nonautonomous case is reduced to the one considered
above by introducing the fictitious equation ṫ = 1.
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HOSM Control

SISO smooth, uncertain system

ż = f (t, z) + g (t, z)u, � = h (t, z) ,

z 2 Rn, u 2 R, � 2 R: sliding variable.

f (t, z) and g (t, z) and n uncertain.

Control objective: to reach and keep � ⌘ 0 in finite time.

Relative Degree ⇢ w.r.t. � is well defined, known and
constant.

Reduced (Zero) Dynamics asymptotically stable (by
appropriate selection of �).
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The basic DI

Defining x = (x
1

, ..., x
⇢

)T = (�, �̇, ..., �(⇢�1))T , �(i) = d

i

dt

ih (z, t)

The regular form

P
T

:

8
<

:

ẋ
i

= x
i+1

, i = 1, ..., ⇢� 1,
ẋ
⇢

= w (t, z) + b (t, z)u, x
0

= x (0) ,
⇣̇ = �(⇣, x) ⇣

0

= ⇣(0) ,

0 < K
m

 b (t, z)  K
M

, |w (t, z)|  C .

Reduced Dynamics Asymptotically stable:

⇣̇ = �(⇣, 0) ⇣
0

= ⇣(0) ,

The basic Di↵erential Inclusion (DI)

P
DI

:

⇢
ẋ
i

= x
i+1

, i = 1, ..., ⇢� 1,
ẋ
⇢

2 [�C, C] + [K
m

, K
M

]u .
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The Basic Problems

Bounded memoryless feedback controller

u = #
⇢

(x
1

, x
2

, · · · , x
⇢

) ,

Render x
1

= x
2

= · · · = x
⇢

= 0 finite-time stable.

Motion on the set x = 0 is ⇢th-order sliding mode.

#
⇢

necessarily discontinuos at x = 0 for robustness [�C, C].

Problem 1
How to design an appropriate control law #

r

?

Problem 2
How to estimate in finite time the required derivatives
x = (x

1

, ..., x
⇢

)T = (�, �̇, ..., �(⇢�1))T ?
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⇢ = 1, First Order Sliding Mode (FOSM)
Control

Introduced in the mid 60’s: Fantastic results, mature
theory, lots of applications,... Utkin, Emelianov, .....
Edwards, Spurgeon, Sira-Ramirez, Loukianov, Zinober, ....

�̇ 2 [�C, C] + [K
m

, K
M

]u .

u = #
1

= �k sign (�), k > C

Km
.

Robust (=insensitive) control, simple realization, finite
time convergence to the sliding manifold,...

Lyapunov design using V (�) = 1

2

�2.

No derivative estimation required.

Mature theory including Multivariable case, adaptation,
design of sliding surfaces, ...
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Sliding modes

Mathematical Aspects I
Sliding Mode Equations (cont).

A.F. Filippov, Application of the theory of differential equations with discontinuous

right-hand sides to non-linear problems of automatic control, Proceedings of 1st IFAC 

Congress in Moscow, 1960,  Butterworths, London, 1961.

grad s
xn

x1

s(x)=0

fsm

!f"
#
$

%

&
''

!

(

0)(  if 

0)(  if  
)(  ),(

xsf

xsf
xfxfx!

Convex

Hullfsm belongs to convex hull
Yu.I. Neimark, Note on A. Filippov’s paper, 

1st IFAC Congress. 

dx/dt=Ax+bu+dv, 

u=-sign(s), v=-sign(s),

s=cx

Nonuniqueness !?
(f
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Continuous vs. Discontinuous Control: A
first order plant

Consider a plant

�̇ = ↵+ u, �(0) = 1

where ↵ 2 (�1, 1) is a perturbation.
Continuous (linear) Control

�̇ = ↵� k�, k > 0, �(0) = 1

Comments:

RHS of DE continuous (linear).

If ↵ = 0 exponential (asymptotic) convergence to � = 0.

If ↵ 6= 0 practical convergence.
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Discontinuous Control

�̇ = ↵� sign(�), �(0) = 1

with ↵ 2 (�1, 1).

� > 0 ) �̇ =< 0

� < 0 ) �̇ => 0

y �(t) ⌘ 0, 8t � T .

Comments:

¿0 = ↵� sign(0)?

RHS of DE is
discontinuous.

After arriving at � = 0,
sliding on � ⌘ 0.
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Finite-Time convergence.

Di↵erential Inclusion.
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Notice the chattering = infinite switching of the control
variable!
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⇢ = 2, Second Order SM (SOSM) Control

Introduced in the mid 80’s: Wonderful results, mature
geometric theory, lots of applications,... Levant, Fridman,
Bartolini, Ferrara, Shtessel, Usai, Feng, Man, Yu, Furuta,
Spurgeon, Orlov, Perruquetti, Barbot, Floquet, Defoort, ....

P
DI

:

⇢
ẋ
1

= x
2

,
ẋ
2

2 [�C, C] + [K
m

, K
M

]u .

Some controllers (see Fridman 2011):
Twisting Controller (Emelyanov, Korovin, Levant 1986).
#2(x) = �k1sign(x1)� k2sign(x2).
Super-Twisting Algorithm (Levant 1993) (as di↵erentiator
Levant 1998).
The Sub-Optimal Algorithm (Bartolini, Ferrara, Usai 1997).
Terminal Sliding Mode Control (Man, Paplinski, Wu, Yu
(1994, 1997..)).

Lyapunov SMC Jaime A. Moreno UNAM 20



A second order plant

ẋ
1

= x
2

ẋ
2

= � (x
1

, x
2

) + u
y = x

1

�: Perturbation/uncertainty.
Question: Can we just feedback the output (as for FO case)?
Two alternative output controllers:

Continuous (linear) output controller (Homogeneous Time
Invariant (HTI))

ẋ
1

= x
2

ẋ
2

= �k
1

y

Discontinuous output controller (HTI)

ẋ
1

= x
2

ẋ
2

= �k
1

sign(y)
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Both Oscillate!
It is impossible to stabilize a double (or triple etc) integrator by
static output feedback!
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State feedback

State feedback controllers:

Continuous (linear) state feedback controller (HTI)

ẋ
1

= x
2

ẋ
2

= �k
1

x
1

� k
2

x
2

Exponential Convergence
Robust, but Sensitive to perturbations: Practical stability.

Continuous HTI state feedback controller

ẋ
1

= x
2

ẋ
2

= �k
1

dx
1

c 1

3 � k
2

dx
2

c 1

2

d·c⇢ = | · |⇢ sign(·)
Finite Time Convergence
Robust, but Sensitive to perturbations: Practical stability.
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First Order Sliding Mode Controller

ẋ
1

= x
2

ẋ
2

= �k
2

sign(x
2

+ k
1

x
1

)

Rewrite as a first order system with a stable (first order) zero
dynamics: with � = x

2

+ k
1

x
1

sliding variable

ẋ
1

= �k
1

x
1

+ �
�̇ = �k

2

sign(�)
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Behavior with perturbation
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Linear controller stabilize exponentially and is not
insensitive to perturbation

SM control also stabilizes exponentially but is insensitive to
perturbation!
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The Twisting Controller

A discontinuous HTI controller able to obtain finite-time
convergence and insensitivity to perturbations:

ẋ
1

= x
2

ẋ
2

= �k
1

sign(x
1

)� k
2

sign(x
2

)
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⇢ = 2, SOSM Control....

Robust (=insensitive) control, finite time convergence to
the sliding manifold,...

No Lyapunov design or analysis.

Analysis and Design is very geometric: Beautiful but
di�cult to extend to ⇢ > 2.

Solution: Homogeneity!
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Classical Homogeneity

Classical Homogeneity for functions. (Euler, Zubov,
Hahn,...)

Let n, m be positive integers. A mapping f : Rn ! Rm is
homogeneous with degree � 2 R i↵ 8� > 0 :

f(�x) = ��f(x).

Some examples:
Linear function: Let A 2 Rm⇥n then f(x) = Ax is
homogeneous of degree � = 1, since

f(�x) = A(�x) = �(Ax) = �f(x) .

f(x
1

, x
2

) =
x

3

1

+x

3

2

x

2

1

+x

2

2

is continuous and homogeneous of degree

� = 1 (but not linear!), since

f(�x
1

, �x
2

) =
(�x

1

)3 + (�x
2

)3

(�x
1

)2 + (�x
2

)2
=
�3(x3

1

+ x3
2

)

�2(x2
1

+ x2
2

)
= �f(x

1

, x
2

) .
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2
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, �x
2
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1
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2

)3

(�x
1

)2 + (�x
2

)2
=
�3(x3

1

+ x3
2

)

�2(x2
1

+ x2
2

)
= �f(x

1

, x
2

) .

Lyapunov SMC Jaime A. Moreno UNAM 30



Classical Homogeneity

Classical Homogeneity for functions. (Euler, Zubov,
Hahn,...)

Let n, m be positive integers. A mapping f : Rn ! Rm is
homogeneous with degree � 2 R i↵ 8� > 0 :

f(�x) = ��f(x).

Some examples:
Linear function: Let A 2 Rm⇥n then f(x) = Ax is
homogeneous of degree � = 1, since

f(�x) = A(�x) = �(Ax) = �f(x) .

f(x
1

, x
2

) =
x

3

1

+x

3

2

x

2

1

+x

2

2

is continuous and homogeneous of degree

� = 1 (but not linear!), since

f(�x
1

, �x
2

) =
(�x

1

)3 + (�x
2

)3

(�x
1

)2 + (�x
2

)2
=
�3(x3

1

+ x3
2

)

�2(x2
1

+ x2
2

)
= �f(x

1

, x
2

) .

Lyapunov SMC Jaime A. Moreno UNAM 30



f(x
1

, x
2

) =

8
<

:
dx

1

c
1

2

+dx
2

c
1

2

x

1

+x

2

if x
1

+ x
2

6= 0

0 otherwise

is discontinuous and homogeneous of degree � = �1

2

, since

f(�x
1

, �x
2

) =
d�x

1

c 1

2 + d�x
2

c 1

2

�x
1

+ �x
2

= ��
1

2 f(�x
1

, �x
2

)

Quadratic Form: if x 2 Rn and P 2 Rn⇥n, q(x) = xTPx is
homogeneous of degree � = 2, since

q(�x) = (�x)TP (�x) = �2xTPx = �2q(x) .

Classical Form = homogeneous polynomial: if x 2 Rn, e.g.

p(x) = ↵
1

x
1

x
2

x
3

+ ↵
2

x
1

x
3

x
5

+ ↵
3

x2
1

x
5

+ ↵
4

x3
2

+ · · ·

is homogeneous of degree � = 3.
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if x
1

+ x
2

6= 0

0 otherwise

is discontinuous and homogeneous of degree � = �1
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d�x
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c 1
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2

c 1
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�x
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+ �x
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Quadratic Form: if x 2 Rn and P 2 Rn⇥n, q(x) = xTPx is
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Classical Homogeneity

Classical Homogeneity for vector fields. (Zubov, Hahn,...)

Let n be a positive integer. A vector field f : Rn ! Rn is
homogeneous with degree � 2 R i↵ 8� > 0 :

f(�x) = ��f(x).

Associated with the vector field f(x) is the Di↵erential
Equation ẋ = f(x), and it has a flow (solution) '(t, x).

Homogeneity of vector field ) Homogeneity of Flow

If 8� > 0 :

f(�x) = ��f(x) ) '(t, �x) = �'(���1t, x)
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Some examples:

Linear system: Let A 2 Rn⇥n then ẋ = f(x) = Ax is
homogeneous of degree � = 1 and the flow is '(t, x) = eAtx

'(t, �x) = eAt(�x) = �eAtx = �'(�0t, x) .

If x is scalar. System ẋ = �sign(x) is homogeneous with
degree � = 0, since

f(�x) = sign(�x) = sign(x) = �0f(x) .

The flow is

'(t, x) =

(
sign(x)(| x | �t) if 0  t | x |
0 if t >| x |

and it is homogeneous

'(t, �x) =

(
sign(�x)(| �x | �t) if 0  t | �x |
0 if t >| �x | = �'(

t

�
, x) .
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⇢ = 1, First Order Sliding Mode (FOSM) Control Problem
⇢ = 2, Second Order Sliding Mode (SOSM) Control

3 Homogeneity
Classical Homogeneity
Weighted Homogeneity
Weighted Homogeneity for systems with inputs
(perturbations)
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4 Homogeneous Design of HOSM (Levant 2005)
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Weighted Homogeneity or
(quasi-homogeneity) (Zubov, Hermes)

A generalized weight is a vector r = (r
1

, · · · , r
n

), with
r
i

> 0.

A dilation is the action of the group R
+

\ {0} on Rn given
by

⇤r : R+

\ {0}⇥ Rn ! Rn

(�, x) ! diag{�ri}x
we will denote this for simplicity as ⇤rx , ⇤r(�, x), � > 0.

Weighted Homogeneity for functions. (Zubov, Hermes...)

Let n, m be positive integers. A mapping f : Rn ! Rm is
r-homogeneous with degree � 2 R i↵ 8� > 0 :

f(⇤rx) = ��f(x).
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Some remarks

Function f(x
1

, x
2

) = x
1

+ x2
2

is not homogeneous, but it is
(2, 1)-homogeneous of degree � = 2 since,

f(�x) = �x
1

+ (�x
2

)2 = �x
1

+ �2x2
2

6= ��f(x), 8� 6= 1 .

f(⇤rx) = �2x
1

+ (�x
2

)2 = �2(x
1

+ x2
2

) = �2f(x) .

Classical Homogeneity = Weighted Homogeneity with
r = (r

1

, · · · , r
n

) = (1, · · · , 1).
Values on the unit sphere define an r-Homogeneous
function.
If f(x) is r-homogeneous of degree � then it is
(↵r)-homogeneous of degree (↵�) for any ↵ > 0
Euler’s Theorem: Let V : Rn ! R be di↵erentiable. V is
r-homogeneous of degree � if and only if

nX

i=1

r
i

x
i

@V

@x
i

(x) = �V (x) .
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Weighted Homogeneity

Weighted Homogeneity for (set-valued) vector fields.
(Zubov, Hermes, Levant, ...)

Let n be a positive integer. A vector field f : Rn ! Rn (a
set-valued vector field f : Rn ◆ Rn) is r-homogeneous with
degree � 2 R i↵ 8� > 0 :

f(⇤rx) = ��⇤rf(x).

Associated with the (set-valued) vector field f(x) is the
Di↵erential Equation ẋ = f(x) (DI ẋ 2 f(x)), and it has a flow
(solution) '(t, x).

r-Homogeneity of vector field ) r-Homogeneity of Flow

If 8� > 0 :

f(⇤rx) = ��⇤rf(x) ) '(t, ⇤rx) = ⇤r'(�
�t, x)
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Some examples:
Super-Twisting (ST) Algorithm:

ẋ
1

= �k
1

dx
1

c 1

2 + x
2

ẋ
2

2 �k
2

dx
1

c0 + [�1, 1] .

is (2, 1)-homogeneous of degree �1, since

�k
1

⌃
�2x

1

⇧ 1

2 + �x
2

= �2�1(�k
1

dx
1

c 1

2 + x
2

)

�k
2

⌃
�2x

1

⇧
0

+ [�1, 1] = �1�1(�k
2

dx
1

c0 + [�1, 1]) .

Twisting Algorithm:

ẋ
1

= x
2

ẋ
2

2 �k
1

dx
1

c0 � k
2

dx
2

c0 + [�1, 1] .

is (2, 1)-homogeneous of degree �1, since

�x
2

= �2�1(x
2

)

� k
1

⌃
�2x

1

⇧
0 � k

2

d�x
2

c0 + [�1, 1] =

�1�1(�k
1

dx
1

c0 � k
2

dx
2

c0 + [�1, 1]) .

�x
2

= �2�1(x
2

)

�k
1

⌃
�2x

1

⇧
0 � k

2

d�x
2

c0 + [�1, 1] = �1�1(�k
1

dx
1

c0 � k
2

dx
2

c0 + [�1, 1]) .
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Two important examples:
Levant’s arbitrary order di↵erentiator:

ẋ
i

= �k
i

dx
1

� f(t)cn�i
n + x

i+1

...

ẋ
n

2 �k
n

dx
1

� f(t)c0 .

is (n, n� 1, · · · , 1)-homogeneous of degree �1.
Homogeneous Controller of a chain of integrators:

ẋ
1

= x
2

...

ẋ
n

= �
nX

i=1

k
i

dx
i

c↵i

is r-homogeneous of degree � 2 [�1, 0] with

r
i

= 1 + (i� n)�, ↵
i

=
1 + �

1 + (i� n)�
.
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Dynamic interpretation of r-homogeneity

System ẋ = f(x) is r-homogeneous of degree �, i.e.
f(⇤rx) = ��⇤rf(x).

State Transformation z = ⇤rx

ż = ⇤rẋ = ⇤rf(x) = ���f(⇤rx)

and therefore
dz

d(��t)
= f(z)

System ẋ = f(x) is invariant under the transformation

G
�

: (t, x) 7! (���t, ⇤rx) .
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Properties of Homogeneous Systems

Zubov, Hahn, Hermes, Kawski, Rosier, Aeyels, Sepulchre,
Grüne, Praly, Perruquetti, Efimov, Polyakov,..... Levant,
Orlov, Bernuau et al. 2013

If x = 0 Locally Attractive (LA) , Globally
Asymptotically Stable (GAS)

local contraction ) global contraction ) global
asymptotic stability

If x = 0 GAS and � < 0 , x = 0 Finite Time Stable

If x = 0 GAS and � = 0 , x = 0 Exponentially Stable (e.g.
LTI systems)

If x = 0 GAS and � > 0 , x = 0 Asymptotically Stable

If x = 0 GAS , It exists a Homogeneous Lyapunov
Function
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Weighted Homogeneity with inputs

Consider a System with inputs u 2 Rm

ẋ = f(x, u) .

State and input weight vectors r = (r
1

, · · · , r
n

), r
i

> 0,
⇢ = (⇢

1

, · · · , ⇢
m

), ⇢
i

> 0

State and input dilations ⇤r and ⇤
⇢

.

Weighted Homogeneity for (set-valued) vector fields with
inputs.

A vector field f : Rn ⇥ Rm ! Rn (a set-valued vector field
f : Rn ⇥ Rm ◆ Rn) is (r, ⇢)-homogeneous with degree � 2 R i↵
8� > 0 :

f(⇤rx, ⇤⇢

u) = ��⇤rf(x, u).
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Associated with the (set-valued) vector field f(x, u) is the
Di↵erential Equation ẋ = f(x, u) (DI ẋ 2 f(x, u)), and it has a
flow (solution) '(t, x, u).

Homogeneity of vector field ) Homogeneity of Flow

If f is homogeneous then 8� > 0 :

'(t, ⇤rx, ⇤⇢

u(��·)) = ⇤r'(�
�t, x, u(·))
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Dynamic interpretation of homogeneity

System ẋ = f(x, u) is homogeneous of degree �, i.e.
f(⇤rx, ⇤⇢

u) = ��⇤rf(x, u).

State and input Transformation z = ⇤rx, w = ⇤
⇢

u

ż = ⇤rẋ = ⇤rf(x, u) = ���f(⇤rx, ⇤⇢

u)

and therefore
dz

d(��t)
= f(z, w)

System ẋ = f(x) is invariant under the transformation

G
�

: (t, x, u) 7! (���t, ⇤rx, ⇤⇢

u) .

Internal stability ) external stability (iISS, ISS) [Bernuau
et al. 2013]
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Weighted Homogeneity and Precision

Consider a System with a scalar and constant input u 2 R

ẋ = f(x, u) .

so that
'(t, ⇤rx, �

⇢u) = ⇤r'(�
�t, x, u) .

Suppose that asymptotically or after a finite time for some u
0

lim
t!1

|'
i

(t, x, u
0

)| = |'1i

(u
0

)|  a
i

.

Therefore (using � = ( u

u

0

)
1

⇢ )

|'1i

(u)| = |'1i

(�⇢u
0

)| = �ri |'1i

(u
0

)|  ⌫
i

u
ri
⇢ ,

with ⌫
i

= a
i

u
� ri

⇢

0

.
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Homogeneous Approximation

First Lyapunov’s Theorem: x = 0 is LAS for ẋ = f(x) if

x = 0 is AS for linearized system ẋ = Ax, where A = @f(0)

@x

.
This is not true for Taylor Approximations. Example from
Bacciotti & Rosier, 2005:

ẋ
1

= �x3
1

+ x3
2

,

ẋ
2

= �x
1

+ x5
2

.

x = 0 is GAS for approximation of order 3 (black), but it is
not AS with perturbation (red) of higher order 5!
However, it is true for homogeneous approximations (Not
unique!)

ẋ
1

= �x3
1

+ x
2

,

ẋ
2

= �x5
1

+ x2
2

.

x = 0 is GAS for homogeneous approximation
r
1

= 1, r
2

= 3, � = 2 (black), and it is still AS with
perturbation (red), which is homogeneous of degree 3.Lyapunov SMC Jaime A. Moreno UNAM 49



Homogeneous Domination

Typical control (similar for observation) problem:

ẋ
1

= x
2

+f
1

(x
1

) ,

ẋ
2

= x
3

+f
2

(x
1

, x
2

) ,
...

ẋ
n

= u+ f
n

(x) .

Homogeneous Approximation (Black):

ẋ
1

= x
2

,
...

ẋ
n

= u = �(x) .

It is homogeneous of degree � = {�1, 0, +1} and weights
r = (r

1

+ �, r
1

+ 2�, · · · , r
1

+ n�): NOT UNIQUE! ) Fixed by
selection of the control law �(x) ) Domination of other terms
f
i

.
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Alternative Integral + state feedback controllers for System

ẋ
1

= x
2

ẋ
2

= u+ ⇢ (t) ,

Linear Integral + state feedback controller (Homogeneous)

u = �k
1

x
1

� k
2

x
2

+ x
3

ẋ
3

= �k
3

x
1

Linear state feedback + Discontinuous Integral controller
(Not Homogeneous)

u = �k
1

x
1

� k
2

x
2

+ x
3

ẋ
3

= �k
3

sign(x
1

)

Discontinuous I-Controller (Extended Super-Twisting)
(Homogeneous)

u = �k
1

|x
1

| 13 sign(x
1

)� k
2

|x
2

| 12 sign(x
2

) + x
3

ẋ
3

= �k
3

sign(x
1

)
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Controller without perturbation
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Controller with perturbation
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Homogeneous Design of HOSM [11]

P
DI

:

⇢
ẋ
i

= x
i+1

, i = 1, ..., ⇢� 1,
ẋ
⇢

2 [�C, C] + [K
m

, K
M

]u .

u = #
r

(x
1

, x
2

, · · · , x
⇢

) ,

#
r

homogeneous of degree 0 (discontinuous at x = 0) with
weights r

s

= (⇢, ⇢� 1, ..., 1)

#
r

�
✏⇢x

1

, ✏⇢�1x
2

, . . . , ✏x
⇢

�
= #

r

(x
1

, x
2

, . . . , x
⇢

) 8✏ > 0

Local boundedness ) global boundedness

System
P

DI

is homogeneous of degree �1 with weights r
s

Local contractive , Global, uniformly Finite-Time stability
Robustness of stability ) Accuracy with respect to
homogeneous perturbations |x

i

|  �
i

⌧⇢+1�i = O
�
⌧⇢+1�i

�
,

�
i

constants.
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Concrete Homogeneous HOSM Controllers

Notation: dxcp = |x|psign (x).
Nested Sliding Controllers (NSC)

u
2L

= �k
2

l
x
2

+ �
1

dx
1

c 1

2

k
0

,

u
3L

= �k
3

⇠
x
3

+ �
2

(|x
2

|3 + |x
1

|2) 1

6

l
x
2

+ �
1

dx
1

c 2

3

k
0

⌫
0

,

Quasi-Continuous Sliding Controllers (QCSC)

u
2C

= �k
2

(x
2

+�

1

dx
1

c1/2)
|x

2

|+�

1

|x
1

|1/2

u
3C

= �k
3

x

3

+�

2

(|x
2

|+�

1

|x
1

|3/2)
�1/2

(x
2

+�

1

dx
1

c3/2)
|x

3

|+�

2

(|x
2

|+�

1

|x
1

|3/2)
1/2 .
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Scaling the gains: again homogeneity!

Example: 2nd Order Nested Controller

ẋ
1

= x
2

ẋ
2

= �k
2

l
x
2

+ �
1

dx
1

c 1

2

k
0

Linear change of coordinates: z = �2x, 0 < � 2 R

ż
1

= �2x
2

= z
2

ż
2

= ��2k
2

⇠
z
2

�2
+ �

1

l z
1

�2

k 1

2

⌫
0

= ��2k
2

lz
2

�
+ �

1

dz
1

c 1

2

k
0

Preserves stability!
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Example: 3rd Order Nested Controller

ẋ
1

= x
2

, ẋ
2

= x
3

,

ẋ
3

= �k
3

⇠
x
3

+ �
2

(|x
2

|3 + |x
1

|2) 1

6

l
x
2

+ �
1

dx
1

c 2

3

k
0

⌫
0

z = �3x, 0 < � 2 R ) Preserves stability!

ż
1

= z
2

, ż
2

= z
3

,

ż
3

= ��3k
3

&
z
3

�3
+ �

2

✓���
z
2

�3

���
3

+
���
z
1

�3

���
2

◆ 1

6

⇠
z
2

�3
+ �

1

l z
1

�3

k 2

3

⌫
0

%
0

= ��3k
3

&
z
3

�2
+ �

2

✓���
z
2

�

���
3

+ |z
1

|2
◆ 1

6

lz
2

�
+ �

1

dz
1

c 2

3

k
0

%
0
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Balance

Advantages:

Beautiful and powerful theory: more qualitative than
quantitative

Simple: local = global, convergence = finite-time = robust

scaling the gains (for nested controllers) for convergence
acceleration

u = �⇢#
r

⇣
x
1

,
x
2

�
, . . . ,

x
⇢

�⇢�1

⌘
, � > 1
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Balance....

Limitations:
Beyond homogeneity unclear how to design #

r

!

It does not provide quantitative results, e.g.
Stabilizing Gains
Convergence Time estimation
Accuracy Gains
Performance quantities

Behavior with respect to non homogeneous perturbations

Behavior under interconnection

Design for performance

Due to Limitations we require other methods, e.g. Lyapunov
(but not exclusively)
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Motivation

Lyapunov based methods

Standard methods in nonlinear control theory

Design for robustness, optimality, performance, etc.

Gain tuning methods

Lyapunov Function for Internal Stability and Lyapunov-like
Functions for External Stability (e.g. ISS, iISS,...)

LF for design: Control Lyapunov Functions (CLF)

Interconnection analysis is possible

Robustness analysis: noise, uncertainties, perturbations

Objective:

A Lyapunov Based framework for HOSM

Belief: Combination of Homogeneity and LF ) powerful tool!
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Main Problem: Construction of LF

Existence of LF for f(x) Filippov Di↵erential Inclusion

It exists a smooth p.d. V (x) [Clarke et al. 1998]

f(x) homogeneous ) V (x) homogeneous [Nakamura et al.
2002, Bernuau et al. 2014]

There are basically two issues:

What is the form or structure of the LF?

How to decide if V (x) and W (x) are positive definite
(p.d.)?

There are many works on these general topics. But there are
few for HOSM algorithms and taking advantage of the
homogeneity properties.
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State of the art

Orlov, 2005 Weak LF for Twisting Algorithm. Mechanical
Energy.

Moreno and Osorio, 2008 Strong non smooth LF for
Super–Twisting. No method.

Polyakov and Poznyak, 2009 Strong non smooth LF for
Twisting and ST. Zubov’s Method.

Santiesteban et al., 2010 Strong LF for Twisting with linear
terms. No method.

Polyakov and Poznyak, 2012 Strong LF for Twisting, Terminal
and Suboptimal. Zubov’s Method.

Sánchez and Moreno, 2012 Strong non smooth LF for Twisting,
Terminal and a sign controller. Trajectory
Integration method.
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Some attempts (in our group)

First steps: the quadratic form approach

Young’s inequality and extensions

Trajectory integration

Reduction method

Generalized Forms approach

Homogenous Control Lyapunov Functions

etc.

I will not talk about Lille’s Group Implicit Lyapunov Functions
(ILF) approach (Polyakov, Efimov, Perruquetti,...)!
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Part II

Lyapunov-Based Design of
Higher-Order Sliding Mode (HOSM)

Controllers
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Robust Stabilization Problem (E. Cruz)

Perturbed nonlinear system

ẋ 2 F (x) + g (x) ⇠ (x)u ,

x 2 Rn, u 2 R
g(x) known vector field

F (x) set-vector field, ⇠ multivalued ) Uncertainties.

Assumptions

0 < K
m

 ⇠ (x)  K
M

F, g are r-homogeneous of degree l.

[5, 6, 13]
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Control Lyapunov Function (CLF)

(Homogeneous) CLF

V (x) 2 C1, p.d., r-homogeneous of degree m > �l

@V (x)

@x
g(x) = 0 ) sup

v2F (x)
L
v

V < 0, 8x 2 Rn \ {0} .

r-homogeneous of degree 0 (discontinuous) Controllers

u = �k'1 (x) = �k
⌃
L
g(x)V (x)

⇧0
,

u = �k'2 (x) = �k
L
g(x)V (x)

kxkl+m

r,p

,

If k � k⇤, x = 0 is GAS, and if l < 0 it is Finite-Time Stable.

kxkr,p =
⇣
|x1|

p
r1 + ·+ |x

n

| p
rn

⌘ 1
p
, p � max r

i

, homogeneous norm .
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HOSM design based on CLF

The Basic Uncertain System

P
DI

:

⇢
ẋ
i

= x
i+1

, i = 1, ..., ⇢� 1,
ẋ
⇢

2 [�C, C] + [K
m

, K
M

]u .

The Design is reduced to find a CLF.

By a Back-Stepping-like procedure construct a CLF

Define

x̄T
i

= [x
1

, · · · , x
i

] ,

r = (r
1

, r
2

, ..., r
⇢

) = (⇢, ⇢� 1, ..., 1) ,

↵
⇢

� ↵
⇢�1

� · · · � ↵
1

� ⇢ ,

m � r
i

+ ↵
i�1

.
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Family of CLFs

CLF r-homogeneous of degree m: 8�
i

> 0, 9k
i

> 0

V (x) = �
⇢

W
⇢

(x̄
⇢

) + · · ·+ �
i

W
i

(x̄
i

) + · · ·+ �
1

⇢

m
|x

1

|m⇢

W
i

(x̄
i

) =
r
i

m
|x

i

|mri � d⌫
i�1

c
m�ri

ri x
i

+
⇣
1� r

i

m

⌘
|⌫

i�1

|mri ,

⌫
i

(x̄
i

) = �k
i

d�
i

c
ri+1

↵i , �
1

= dx
1

c
↵
1

r
1

�
i

(x̄
i

) = dx
i

c
↵i
ri � d⌫

i�1

c
↵i
ri = dx

i

c
↵i
ri + k

↵i
ri
i�1

d�
i�1

c
↵i

↵i�1 ,

V (x) is a continuously di↵erentiable and r-homogeneous CLF of
degree m.
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HOSM Controllers

HOSM Discontinuous Controller

Discontinuity at �
⇢

(x) = 0

u
D

(x) = �k
⇢

d�
⇢

(x)c0 , k
⇢

� 0 ,

HOSM Quasi-Continuous Controller

Discontinuity only at x = 0

u
Q

(x) = �k
⇢

�
⇢

(x)

M(x)
, k

⇢

� 0 ,

M (x) is any continuous r-homogeneous positive definite
function of degree ↵

⇢

.

⇢-th order sliding mode x = 0 is established in Finite-Time.
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Convergence Time Estimation

Convergence Time Estimation

T (x
0

)  m⌧
⇢

V
1

m
⇢

(x
0

) ,

where ⌧
⇢

is a function of the gains (k
1

, ..., k
⇢

), K
m

and C.
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Variable-Gain HOSM Controller

If C = C̄ +⇥ (t, z), with constant C̄ and time-varying
⇥ (t, z) � 0 known.

Variable-Gain Controller
The Discontinuous Variable-Gain HOSM Controller

u
D

(x) = � (K (t, z) + k
⇢

) d�
⇢

(x)c0 , k
⇢

� 0 ,

and the Quasi-Continuous Variable-Gain HOSM Controller

u
Q

(x) = � (K (t, z) + k
⇢

)
�
⇢

(x)

M(x)
, k

⇢

� 0 ,

stabilize the origin x = 0 in Finite-Time if k
⇢

� 0 and
K

m

K (t, z) � ⇥ (t, z).
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Discontinuous Nested HOSM Controllers

For ↵
⇢

� · · · � ↵
1

� ⇢, the discontinuous Controllers of orders
⇢ = 2, 3, 4 are given by

u
2D

= �k
2

l
dx

2

c↵2 + k↵2

1

dx
1

c↵
2

2

k
0

u
3D

= �k
3

&
dx

3

c↵3 + k↵3

2

⇠
dx

2

c↵
2

2 + k
↵
2

2

1

dx
1

c↵
2

3

⌫↵
3

↵
2

%
0

u
4D

= �k
4

2

6666
dx

4

c↵4

+k

↵
4

3

2

666
dx

3

c
↵
3

2

+k

↵
3

2

2

⇠
dx

2

c
↵
2

3

+k

↵
2

3

1

dx
1

c
↵
2

4

⌫↵
3

↵
2

7775

↵
4

↵
3

77775

0

and are, in general, of the type of the Nested Sliding Controllers
(Levant 2005).
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Discontinuous Relay Polynomial HOSM
Controllers

Cruz-Zavala & Moreno (2014, 2016) [4, 3, 5]; Ding, Levant & Li
(2015,2016) [7, 8].
For ↵

⇢

= ↵
⇢�1

= · · · = ↵
1

= ↵ � ⇢ discontinuous ”relay
polynomial” controllers

u
2R

= �k
2

sign
⇣
dx

2

c↵ + k̄
1

dx
1

c↵
2

⌘
,

u
3R

= �k
3

sign
⇣
dx

3

c↵ + k̄
2

dx
2

c↵
2 + k̄

1

dx
1

c↵
3

⌘

u
4R

= �k
4

sign
⇣
dx

4

c↵ + k̄
3

dx
3

c↵
2 + k̄

2

dx
2

c↵
3 + k̄

1

dx
1

c↵
4

⌘

where for ⇢ = 2, k̄
1

= k↵
1

; for ⇢ = 3, k̄
1

= k↵
2

k
↵
2

1

, k̄
2

= k↵
2

; and

for general ⇢, k̄
i

=
Q

⇢�1

j=i

k
↵

⇢�j

j

.
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Quasi-Continuous Nested or Relay
Polynomial HOSM Controllers

For arbitrary �
i

> 0

u
2Q

= �k
2

dx
2

c↵2 + k↵2

1

dx
1

c↵
2

2

|x
2

|↵2 + �
1

|x
1

|↵2

2

,

u
3Q

= �k
3

dx
3

c↵3 + k↵3

2

⇠
dx

2

c↵
2

2 + k
↵
2

2

1

dx
1

c↵
2

3

⌫↵
3

↵
2

|x
3

|↵3 + �
2

|x
2

|↵3

2 + �
1

|x
1

|↵3

3

u
4Q

= �k
4

dx
4

c↵4

+k

↵
4

3

2

666
dx

3

c
↵
3

2

+k

↵
3

2

2

⇠
dx

2

c
↵
2

3

+k

↵
2

3

1

dx
1

c
↵
2

4

⌫↵
3

↵
2

7775

↵
4

↵
3

|x
4

|↵4 + �
3

|x
3

|↵4

2 + �
2

|x
2

|↵4

3 + �
1

|x
1

|↵4

4
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Numerical Gain Calculation

k
i

, for i = 1, · · · , ⇢� 1, selected to render V (x) a CLF,

k
⇢

to obtain V̇ < 0.

Fix m, ⇢, ↵
i

and �
i

. Set k
1

> 0, for i = 2, · · · , ⇢
k
i

> max
x̄i2Si

{�
i

(x̄
i

)} =: G
i

(k
1

, · · · , k
i�1

) , (2)

Maximization feasible since
1 � is r-homogeneous of degree 0:achieves all its values on the

homogeneous unit sphere S
i

= {x̄
i

2 Ri : kx̄
i

kr,p = 1}, and
2 � is upper-semicontinuous ) it has a maximum on S

i

.

Parametrization

k
i

= µ
i

k
⇢

⇢�(i�1)

1

, k
⇢

> 1

Km
(µ

⇢

k⇢
1

+ C) , (3)

for some positive constants µ
i

independent of k
1

.

Parametrization can be used for all controllers, but k
⇢

di↵erent for discontinuous and quasi-continuous controllers.
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Analytical Gain calculation

It is possible (but cumbersome) to provide for any order an
analytical estimation of the values of the gains using classical
inequalities.

The simplest case with ⇢ = 3, u
3D

, u
3R

and u

3Q

For any values of ↵
3

� ↵
2

� r
1

= 3, m � r
2

+ ↵
2

, �
1

> 0,
0 < ⌘ < 1 and k

1

> 0,

k
2

>
r
2

2
m�2r

2

↵
2

m� 1

0

@(m� r
1

)2
↵
2

�r
2

↵
2

m� 1

1

A

m�r
1

r
2

✓
�
1

+ m�r

2

r

1

k
m
r
2

1

◆m�1

r
2

(⌘�
1

k
1

)
m�r

1

r
2

.
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Remarks

By homogeneity the gain scaling with any L � 1

kT = (k
1

, · · · , k
⇢

) ! kT

L

= (L
1

⇢k
1

, · · · , L 1

⇢+1�ik
i

, · · · , Lk
⇢

)

preserves the stability for any ↵
j

.

Convergence will be accelerated for L > 1, or the size of
the allowable perturbation C will be incremented to LC.

The gains obtained by means of the LF can be very large
for practical applications, so that a simulation-based gain
design is eventually necessary (see [5]).

The gain design problem is an important and unexplored
one.
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Example

Kinematic model of a car [10]

ż
1

= v cos (z
3

) , ż
2

= v sin (z
3

) , ż
3

=
�
v

L

�
tan (z

4

) , ż
4

= u,

z
1

, z
2

: cartesian coordinates of the rear-axle middle point,

z
3

: the orientation angle,

z
4

: the steering angle, (Actual control)

v: the longitudinal velocity (v = 10 m.s�1),

L: distance between the two axles (L = 5 m), and

u: the control input.

u is used as a new control input in order to avoid discontinuities
on z

4

.
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Control Objective

Control Task: steer the car from a given initial position to
the trajectory z

2ref

= 10 sin (0.05z
1

) + 5 in finite time.

Turn on the controllers after Observer converged (0.5 sec.).

Sliding variable � = z
2

� z
2ref

, relative degree ⇢ = 3, Model

ẋ
1

= x
2

, ẋ
2

= x
3

, ẋ
3

= �(·) + �(·)u,

where x =
⇥
� �̇ �̈

⇤
T

.

Simulations: Euler’s method, sampling time ⌧ = 0.0005.

Bounds: |�|  C
0

= 49.63, K
m

= 6.38  �  K
M

= 46.77.

Controllers: (i) Levant’s Discontinuous Controller (L3)
with �

1

= 1, �
2

= 2 and k
3

= 20; (ii) Levant’s
Quasi-Continuous Controller (Q3) with �

1

= 1, �
2

= 2 and
k
3

= 24.5; and (iii) Proposed Discontinuous Controller
(E3) u

3D

= �k
3

d�
3

c0 with k
1

= 1, k
2

= 1.5, k
3

= 20.
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Simulations
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Figure : Left column: Levant’s Discontinuous Controller (L3), Middle
Column: Levant’s Quasi-Continuous Controller (Q3); Right Column:
Proposed Discontinuous Controller (E3).
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Simulations
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Figure : Accuracy: (a) with (L3); (b) with (Q3); (c) with (E3); (d)
with (Q3) (k3 = 70).

Advantage of (E3): combines fast convergence rate of (L3)
with smooth transient response of (Q3).
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Resumé

New: Methodological approach to design HOSM controllers
using CLF.

Di↵erent alternatives to find CLFs: Back-stepping,
Polynomial methods, ...

It can be extended to design controllers with Fixed-Time
convergence.

Drawback: Calculation of gains k
i

needs maximization of
0-degree homogeneous functions.
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Part III

HOSM Di↵erentiation/Observation: A
Lyapunov Approach
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Basic Observation Problem

Variations of the observation problem: with unknown inputs,
practical observers, robust observers, stochastic framework to
deal with noises, ....
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An important Property: Observability

Consider a nonlinear system without inputs, x 2 Rn, y 2 R

ẋ (t) = f (x (t)) , x (t
0

) = x
0

y (t) = h (x (t))

Di↵erentiating the output

y (t) = h (x (t))

ẏ (t) =
d

dt
h (x (t)) =

@h (x)

@x
ẋ (t) =

@h (x)

@x
f (x) := L

f

h (x)

ÿ (t) =
@L

f

h (x)

@x
ẋ (t) =

@L
f

h (x)

@x
f (x) := L2

f

h (x)

...

y(n�1) (t) =
@Ln�2

f

h (x)

@x
ẋ (t) =

@Ln�2

f

h (x)

@x
f (x) := Ln�1

f

h (x)

where Lk

f

h (x) are Lie’s derivatives of h along f .
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Evaluating at t = 0

2

666664

y (0)
ẏ (0)
ÿ (0)
...
y(k) (0)

3

777775
=

2

666664

h (x
0

)
L
f

h (x
0

)
L2

f

h (x
0

)
...
Lk

f

h (x
0

)

3

777775
:= O

n

(x
0

)

O
n

(x): Observability map

Theorem

If O
n

(x) is injective (invertible) ! The NL system is
observable.

Lyapunov SMC Jaime A. Moreno UNAM 97



Observability Form

In the coordinates of the output and its derivatives

z = O
n

(x) , x = O�1

n

(z)

the system takes the (observability) form

ż
1

= z
2

ż
2

= z
3

...
ż
n

= � (z
1

, z
2

, . . . , z
n

)
y = z

1

So we can consider a system in this form as a basic structure.

Lyapunov SMC Jaime A. Moreno UNAM 98



A Simple Observer and its Properties

Plant: ẋ
1

= x
2

, ẋ
2

= w(t)
Observer: ˙̂x

1

= �l
1

(x̂
1

� x
1

) + x̂
2

, ˙̂x
2

= �l
2

(x̂
1

� x
1

)
Estimation Error: e

1

= x̂
1

� x
1

, e
2

= x̂
2

� x
2

ė
1

= �l
1

e
1

+ e
2

, ė
2

= �l
2

e
1

� w (t)

Figure : Linear Plant with an unknown input and a Linear Observer.
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Figure : Behavior of Plant and the Linear Observer without unknown
input.
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Figure : Behavior of Plant and the Linear Observer with unknown
input.
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Figure : Behavior of Plant and the Linear Observer without UI with
large initial conditions.
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Figure : Behavior of Plant and the Linear Observer without UI with
very large initial conditions.
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Recapitulation.

Linear Observer for Linear Plant

If no unknown inputs/Uncertainties: it converges
exponentially fast.

If there are unknown inputs/Uncertainties: no convergence.
At best bounded error.

Convergence time depends on the initial conditions of the
observer

Is it possible to alleviate these drawbacks?
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Sliding Mode Observer (SMO)

Figure : Linear Plant with an unknown input and a SM Observer.
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Figure : Behavior of Plant and the SM Observer without unknown
input.

Lyapunov SMC Jaime A. Moreno UNAM 106



0 20 40 60
0

20

40

60

80

100

120

140

Time (sec)

S
ta

te
 x

1
0 20 40 60

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

S
ta

te
t 

x 2
0 20 40 60

−1

0

1

2

3

4

Time (sec)

E
st

im
a

tio
n

 e
rr

o
r 

e
1

 

 

0 20 40 60
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (sec)

E
st

im
a

tio
n

 e
rr

o
r 

e
2

 

 
Linear Observer

Nonlinear Observer
Linear Observer

Nonlinear Observer

Figure : Behavior of Plant and the SM Observer with unknown input.
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Recapitulation.

Sliding Mode Observer for Linear Plant

If no unknown inputs/Uncertainties: e
1

converges in finite
time, and e

2

converges exponentially fast.

If there are unknown inputs/Uncertainties: no convergence.
At best bounded error. Only e

1

converges in finite time!

Convergence time depends on the initial conditions of the
observer

It is not the solution we expected! None of the objectives
has been achieved!
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Super-Twisting Algorithm (STA)

Plant:
ẋ
1

= x
2

,
ẋ
2

= w(t)

Observer:
˙̂x
1

= �l
1

|e
1

| 12 sign (e
1

) + x̂
2

,
˙̂x
2

= �l
2

sign (e
1

)

Estimation Error: e
1

= x̂
1

� x
1

, e
2

= x̂
2

� x
2

ė
1

= �l
1

|e
1

| 12 sign (e
1

) + e
2

ė
2

= �l
2

sign (e
1

)� w (t) ,

Solutions in the sense of Filippov.
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Figure : Linear Plant with an unknown input and a SOSM Observer.
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Figure : Behavior of Plant and the Non Linear Observer without
unknown input.
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Figure : Behavior of Plant and the Non Linear Observer without UI
with large initial conditions.
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Recapitulation.

Super-Twisting Observer for Linear Plant

If no unknown inputs/Uncertainties: e
1

and e
2

converge in
finite-time!

If there are unknown inputs/Uncertainties: e
1

and e
2

converge in finite-time! Observer is insensitive to
perturbation/uncertainty!

Convergence time depends on the initial conditions of the
observer. This objective is not achieved!
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Generalized Super-Twisting Algorithm
(GSTA)

Plant:
ẋ
1

= x
2

,
ẋ
2

= w(t)

Observer:
˙̂x
1

= �l
1

�
1

(e
1

) + x̂
2

,
˙̂x
2

= �l
2

�
2

(e
1

)

Estimation Error: e
1

= x̂
1

� x
1

, e
2

= x̂
2

� x
2

ė
1

= �l
1

�
1

(e
1

) + e
2

ė
2

= �l
2

�
2

(e
1

)� w (t) ,

Solutions in the sense of Filippov.

�
1

(e
1

) = µ
1

|e
1

| 12 sign (e
1

) + µ
2

|e
1

| 32 sign (e
1

) , µ
1

, µ
2

� 0 ,

�
2

(e
1

) =
µ2

1

2
sign (e

1

) + 2µ
1

µ
2

e
1

+
3

2
µ2

2

|e
1

|2 sign (e
1

) ,
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Figure : Linear Plant with an unknown input and a Non Linear
Observer.
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Figure : Behavior of Plant and the Non Linear Observer without
unknown input and large initial conditions.
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Figure : Behavior of Plant and the Non Linear Observer without
unknown input and very large initial conditions.
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Figure : Behavior of Plant and the Non Linear Observer with UI with
large initial conditions.
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E↵ect: Convergence time independent of
I.C.
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Figure : Convergence time when the initial condition grows.
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Recapitulation.

Generalized Super-Twisting Observer for Linear Plant

If no unknown inputs/Uncertainties: e
1

and e
2

converge in
finite-time!

If there are unknown inputs/Uncertainties: e
1

and e
2

converge in finite-time! Observer is insensitive to
perturbation/uncertainty!

Convergence time is independent of the initial conditions of
the observer!.

All objectives were achieved!

How to proof these properties?
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What have we achieved?

An algorithm

Robust: it converges despite of unknown
inputs/uncertainties

Exact: it converges in finite-time

The convergence time can be preassigned for any arbitrary
initial condition.

But there is no free lunch!

It is useful for

Observation

Estimation of perturbations/uncertainties

Control: Nonlinear PI-Control

in practice?

Some Generalizations are available but Still a lot is missing
Lyapunov SMC Jaime A. Moreno UNAM 124
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Lyapunov functions:

1 We propose a Family of strong Lyapunov functions, that
are Quadratic-like

2 This family allows the estimation of convergence time,

3 It allows to study the robustness of the algorithm to
di↵erent kinds of perturbations,

4 All results are obtained in a Linear-Like framework, known
from classical control,

5 The analysis can be obtained in the same manner for a
linear algorithm, the classical ST algorithm and a
combination of both algorithms (GSTA), that is non
homogeneous.
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Generalized STA

ẋ
1

= �k
1

�
1

(x
1

) + x
2

ẋ
2

= �k
2

�
2

(x
1

) ,
(4)

Solutions in the sense of Filippov.

�
1

(e
1

) = µ
1

|e
1

| 12 sign (e
1

) + µ
2

|e
1

|q sign (e
1

) , µ
1

, µ
2

� 0 , q � 1 ,

�
2

(e
1

) =
µ2

1

2
sign (e

1

) +

✓
q +

1

2

◆
µ
1

µ
2

|e
1

|q� 1

2 sign (e
1

)+

+ qµ2

2

|e
1

|2q�1 sign (e
1

) ,

Standard STA: µ
1

= 1, µ
2

= 0

Linear Algorithm: µ
1

= 0, µ
2

> 0, q = 1.

GSTA: µ
1

= 1, µ
2

> 0, q > 1.
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Quadratic-like Lyapunov Functions

System can be written as:

⇣̇ = �0
1

(x
1

)A⇣ , ⇣ =


�
1

(x
1

)
x
2

�
, A =

�k
1

1
�k

2

0

�
.

Family of strong Lyapunov Functions:

V (x) = ⇣TP ⇣ , P = P T > 0 .

Time derivative of Lyapunov Function:

V̇ (x) = �0
1

(x
1

) ⇣T
�
ATP + PA

�
⇣ = ��0

1

(x
1

) ⇣TQ⇣

Algebraic Lyapunov Equation (ALE):

ATP + PA = �Q
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Figure : The Lyapunov function.
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Lyapunov Function

Proposition

If A Hurwitz then x = 0 Finite-Time stable (if µ
1

= 1) and
for every Q = QT > 0, V (x) = ⇣TP ⇣ is a global, strong
Lyapunov function, with P = P T > 0 solution of the ALE,
and

V̇  ��
1

(Q,µ
1

)V
1

2 (x)� �
2

(Q,µ
2

)V (x) ,

where

�
1

(Q,µ
1

) , µ
1

�
min

{Q}�
1

2

min

{P}
2�

max

{P} , �
2

(Q,µ
2

) , µ
2

�
min

{Q}
�
max

{P}
If A is not Hurwitz then x = 0 unstable.
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Convergence Time

Proposition

If k
1

> 0 , k
2

> 0, and µ
2

� 0 a trajectory of the GSTA starting
at x

0

2 R2 converges to the origin in finite time if µ
1

= 1, and
it reaches that point at most after a time

T =

8
<

:

2

�

1

(Q,µ

1

)

V
1

2 (x
0

) if µ
2

= 0
2

�

2

(Q,µ

2

)

ln
⇣
�

2

(Q,µ

2

)

�

1

(Q,µ

1

)

V
1

2 (x
0

) + 1
⌘

if µ
2

> 0
,

When µ
1

= 0 the convergence is exponential.

For Design: T depends on the gains!
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GSTA with perturbations: ARI

GSTA with time-varying and/or nonlinear perturbations

ẋ
1

= �k
1

�
1

(x
1

) + x
2

ẋ
2

= �k
2

�
2

(x
1

) + ⇢ (t, x) .

Assume
2 |⇢ (t, x)|  �

Analysis: The construction of Robust Lyapunov Functions can
be done with the classical method of solving an Algebraic
Ricatti Inequality (ARI), or equivalently, solving the LMI


ATP + PA+ ✏P + �2CTC PB

BTP �1

�
 0 ,

where

A =

�k
1

1
�k

2

0

�
, C =

⇥
1 0

⇤
, B =


0
1

�
.
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Di↵erentiation

Signal f (t) is a Lebesgue-measurable function on [0,1).

f(t) = f
0

(t) + v(t): unknown
f0(t), unknown base signal, n-times di↵erentiable,
|f0|(n)(t)  L, L known
|v(t)|  ⌘ uniformly bounded noise signal.

Using: &
1

= f
0

(t) , . . . , &
i+1

= f
(i)

0

(t) , d

i

dt

i f0 (t), i = 1, ..., n,

state representation of the base signal

&̇
i

= &
i+1

, i = 1, · · · , n� 1,

&̇
n

= f
(n)

0

(t)

y = &
1

+ v

Di↵erentiator = Observer with (bounded) Unknown Input
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|f0|(n)(t)  L, L known
|v(t)|  ⌘ uniformly bounded noise signal.

Using: &
1

= f
0

(t) , . . . , &
i+1

= f
(i)

0

(t) , d

i

dt

i f0 (t), i = 1, ..., n,

state representation of the base signal

&̇
i

= &
i+1

, i = 1, · · · , n� 1,

&̇
n

= f
(n)

0

(t)

y = &
1

+ v
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The Linear or High Gain Di↵erentiator

ẋ
i

= �k
i

1

✏i
(x

1

� f) + x
i+1

,

... i = 1, · · · , n� 1

ẋ
n

= �k
n

1

✏n
(x

1

� f) ,

Smooth di↵erentiator

Detailed analysis possible using linear methods: Vasiljevic
and Khalil (2008)

Quadratic Lyapunov Function

Gain optimization
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Trade o↵ ! Optimization
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Levant’s Robust and Exact Di↵erentiator

ẋ
i

= �k
i

�
i
n dx

1

� fcn�i
n + x

i+1

,

... i = 1, · · · , n� 1

ẋ
n

= �k
n

� dx
1

� fc0 ,

bzep = |z|psign(z)

Levant 1998 (2nd order), 2003 (arbitrary order)

Discontinuous: Filippov’s Di↵erential Inclusion

In the absence of noise it converges exactly in finite time.

Basic for Higher Order Sliding Modes. Extensions: J.P.
Barbot, Fridman, ....

Convergence proof: Geometry and Homogeneity

It provides Qualitative properties. No gain design method.

Lyapunov SMC Jaime A. Moreno UNAM 141



Levant’s Robust and Exact Di↵erentiator

ẋ
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Levant’s Robust and Exact Di↵erentiator

No Lyapunov Function available for arbitrary order.

For order n = 2:
Polyakov and Poznyak (2009).
Moreno and Osorio (2008,2012) a non-smooth Lyapunov
function

V (e) = [de1c
1
2 , e2]P [de1c

1
2 , e2]

T

It provides necessary and su�cient conditions.
Detailed analysis and (gain) design possible.

For order n = 3:
Moreno (2012). Non smooth Lyapunov Function.
It provides su�cient conditions.
Analysis and (gain) design possible. Nonlinear inequalities
to solve.
Sanchez et al. (2015,2016): smooth LF. Use of SOS-like
methods.
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Homogeneous Di↵erentiators

ẋ
i

= �k
i

�
i
n dx

1

� fc
ri+1

r
1 + x

i+1

,

... i = 1, · · · , n� 1

ẋ
n

= �k
n

� dx
1

� fc
rn+1

r
1 ,

0 < r
i+1

= r
i

+ d , i = 1, . . . , n , r
n

= 1, �1  d  0

For d = 0: Linear (HG) Di↵erentiator (Khalil and
Coauthors).

For d = �1: Levant’s Di↵erentiator. (1998, 2003,...).

For �1 < d  0 Di↵erentiator is continuous

For �1 = d Di↵erentiator is discontinuous, i.e. (Di↵erential
Inclusion).
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The di↵erentiation error

Di↵erentiation error e
i

, x
i

� f
(i�1)

0

ė
i

= �k
i

�
i
n de

1

+ vc
ri+1

r
1 + e

i+1

,

... i = 1, · · · , n� 1

ė
n

= �k
n

� de
1

+ vc
rn+1

r
1 � f (n)(t) ,

If f (n)(t) ⌘ 0 and �1 < d  0 homogeneous with
homogeneity degree d and weights r = [r

1

, · · · , r
n

].

If f (n)(t) 2 [�L, L] and d = �1 is a homogeneous DI with
homogeneity degree d = �1 and weights
r = [n, n� 1, · · · , 1].
Family parametrized by degree of homogeneity �1  d  0
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Properties of homogeneous di↵erentiators

Properties

Set � = 1. 9k
i

(L, d) such that as t ! 1 the di↵erentiation
error e

i

For v (t) ⌘ 0 and polynomial signals, Sn

p

=
�
f (n) (t) ⌘ 0

 

For d = 0: converges exponentially,
For �1  d < 0: converges in finite time.

For v (t) ⌘ 0 and n-Lipschitz signals Sn

L

=
���f (n) (t)

��  L
 

For d = �1: converges in finite time (if k
n

> L),
For �1 < d  0: Ultimately Uniformly Bounded.

For a uniformly bounded noise (|v (t)|  ⌘) and n-Lipschitz
signals Sn

L

=
���f (n) (t)

��  L
 
,

for �1  d  0, e
i

is Ultimately Uniformly Bounded.

The same holds for any � � 1.
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Remarks

For d = 0 this is well known. Lyapunov and Frequency
analysis is possible.

For �✏ < d < 0 Perruquetti et al. (2008) show convergence
for Hurwitz gains.

For continuous cases �1 < d  0 there exist smooth
Lyapunov functions: Yang and Lin (2004), Qian and Lin
(2005), Andrieu et al. (2006,2008,2009),...

We extend the approach to the discontinuous case d = �1.

Analysis, design and comparison for the whole family.

For n = 2 the quadratic LF can be applied for �1  d < 1
(Moreno 2009, 2011, 2013).
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The Lyapunov Function I

Fix p � r
1

+ r
2

= 2� (2n� 3) d > 1 and define

z
i

=
e
i

k
i�1

, k̃
i

=
k
i

k
i�1

, k
0

= 1 , �̄ (t) = �f (n) (t)

k
n�1

.

Z
i

(z
i

, z
i+1

) =
r
i

p
|z

i

|
p
ri � z

i

dz
i+1

c
p�ri
ri+1 +

✓
p� r

i

p

◆
|z

i+1

|
p

ri+1 ,

Z
i

are continuously di↵erentiable, positive semidefinite and

Z
i

(z
i

, z
i+1

) = 0 if and only if dz
i

c
p
ri = dz

i+1

c
p

ri+1 .
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The Lyapunov Function II

Lyapunov Function

For every p � 2� (2n� 3) d > 1 and �
i

> 0 each di↵erentiator
of the family �1  d  0 admits a strong, proper, smooth and
r�homogeneous of degree p Lyapunov function of the form

V (z) =
n�1X

j=1

�
j

Z
j

(z
j

, z
j+1

) + �
n

1

p
|z

n

|p

�
i

> 0 , i = 1, · · · , n .

V (z) is positive definite and (due to homogeneity) radially
unbounded.

For the linear case (d = 0, p = 2) V is a quadratic form.
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Idea of the Proof

The basic idea (similar to Yang and Lin 2004, Qian and
Lin 2005, Andrieu et al. 2006, 2008, ...) is to reduce
stepwise the observer and showing convergence for a
smaller observer.

For the discontinuous case an issue: V̇ is discontinuous.
Properties of continuous homogeneous functions are not
valid. Two ways out

The derivative satisfies

V̇  �↵
2

V
p+d
p + ↵

3

LV
p�1

p +
nX

i=1

k̃
i

µ
i

V
p�ri

p |⌘|
ri+1

r
1 ,

for some µ
i

> 0.

Using standard arguments: di↵erentiation error is ISS with
respect to the noise ⌘ (t) and fn

0

(t).
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Some observations

Noise influence:
For d = �1: 9µ

i

(k
i

), s.t.

|e
i

| = |x
i

� f i�1
0 |  µ

i

|⌘|n�i+1
n

For d = 0: 9µ
i0(ki), s.t.

|e
i

| = |x
i

� f i�1
0 |  µ

i0|⌘|

Gain selection: From down upwards (k
n

, k
n�1

, · · · , k
1

)
independent of the order. Calculation by maximization of a
homogeneous function.
Parameter � > 1 accelerates convergence and increases the
allowed bound L, but it also increases the noise e↵ect.
Convergence Time Estimation

V̇  �V (z)
p�1

p , > 0 , , T (z
0

)  p


V

1

p (z
0

) .
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First Order di↵erentiator (n = 2)

ẋ
1

= �k
1

dx
1

� fc 1

1�d + x
2

ẋ
2

= �k
2

dx
1

� fc 1+d
1�d ,

x
2

(t) ⇡ f
(1)

0

.

Homogeneous of degree is �1  d  0, weights
r
1

= 1� d, r
2

= 1, and r
3

= 1 + d.

For d = �1 Levant’s robust and exact di↵erentiator, for
d = 0 linear di↵erentiator.
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First Order di↵erentiator (n = 2) contd. I

Lyapunov Function is

V (z
1

, z
2

) =
1� d

2� d
|z

1

| 2�d
1�d � z

1

z
2

+

✓
� + 1

2� d

◆
|z

2

|2�d ,

Derivative V̇

V̇ = �k
1

|�
1

|2 + k̃
2

(1 + �) s
1

dz
1

c 1+d
1�d � k̃

2

� |z
1

| 2

1�d

�
1

=
⇣
dz

1

c 1

1�d � z
2

⌘
, s

1

=
⇣
z
1

� dz
2

c1�d

⌘
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First Order di↵erentiator (n = 2) contd. II

Required value of k
1

satisfies

k
1

k̃
2

=
k2
1

k
2

> !
2

, max
z2R2

g
2

(z
1

, z
2

) ,

g
2

(z
1

, z
2

) ,

⇣
s
1

� � dz
2

c1�d

⌘
dz

1

c 1+d
1�d

|�
1

|2 .

g
2

(z
1

, z
2

) homogeneous of degree zero, upper semicontinuous
and has a maximum, achieved on the homogeneous sphere.
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Second Order di↵erentiator (n = 3)

ẋ
1

= �k
1

dx
1

� fc 1�d
1�2d + x

2

ẋ
2

= �k
2

dx
1

� fc 1

1�2d + x
3

ẋ
3

= �k
3

dx
1

� fc 1+d
1�2d

x
2

(t) ⇡ f (1) (t) and x
3

(t) ⇡ f (2) (t).

V (z) = Z
1

(z
1

, z
2

) + �
2

Z
2

(z
2

, z
3

) +
�
3

p
|z

3

|p

k2
2

k
1

k
3

> !
23

,
k
1

k
2

k
3

> !
13

,
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Simulations

Signal f
0

(t) = 0.5 sin (0.5t) + 0.5 cos (t),

Bounded derivative
���f (3)

0

(t)
���  1.

Simulations for linear d = 0, homogeneous d = �0.5 and
Levant’s d = �1 di↵erentiators.

Noise v (t) = " sin (!t), " = 0.001, and ! = 1000.

Gains k
1

= 3, k
2

= 1.5
p
3, k

3

= 1.1.

Euler-method with step size ⌧ = 3⇥ 10�4.
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Simulations: No noise
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Simulations: Noisy measurement
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Conclusions

A family of Homogeneous continuous and discontinuous
di↵erentiators is proposed.
Unified family of di↵erentiable LFs is given.
It allows to

Gain calculation (also use of SoS-like methods).
But the set of stabilizing gains is not covered!
Coe�cients for the noise and High derivative e↵ect can be
calculated (conservative!).
Comparison is possible (future work).
Convergence time estimation.

The discontinuous di↵erentiator is the only capable of
exactness.
It brings together homogeneous continuous and
discontinuous observation.
Extension to nonlinear observers in observability
(triangular) form is possible (Bernard, Praly, Andrieu
NOLCOS2016).
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Part IV

Construction of Lyapunov Functions
using Generalized Forms
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Generalized Forms (GF) method [Sanchez
and Moreno 2014, 2016]

Basic Idea:
Transform a PDE

@V (x)

@x
f(x) = �W (x)

) Algebraic equation + Positive Definiteness

Motivation: Lyapunov functions for LTI systems

System: ẋ = Ax , x 2 Rn ,

LF Candidate: V (x) = xTPx ,

LF Derivative: �V̇ = W (x) = xTQx ,

Algebraic Lyapunov Equation: PA+ATP = �Q .
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Classic forms:

Homogeneous polynomial of degree m 2 Z�0

f(x) =
MX

j=1

↵
j

nY

i=1

x
⇢i,j

i

, ⇢
i,j

2 Z�0

,

nX

i=1

⇢
i,j

= m

Finite M 2 Z
>0

, ↵
j

2 R, x 2 Rn.

Example

f(x) = 2x4
1

+ 3x3
1

x
2

+ 5x2
1

x2
2

� 6x
1

x3
2

+ 8x4
2

.
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Generalized forms (GF):

Homogeneous function of degree m 2 R�0

with weights r

f(x) =
NX

j=1

↵
j

nY

i=1

�
i,j

(x
i

, ⇢
i,j

) , ⇢
i,j

2 R�0

,

nX

i=1

r
i

⇢
i,j

= m

�
i,j

(x
i

, ⇢
i,j

) = |x
i

|⇢i,j , dx
i

c⇢i,j

Finite N 2 Z
>0

, ↵
j

2 R, x 2 Rn.

Example

f(x) = 
1

|x
1

| 5⇡2 + 
2

dx
1

c⇡
2 |x

2

| 4⇡3 , 
i

2 R .

m = 5⇡, r = [2, 3]>.

Classic forms ⇢ GFs
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Motivational example

Homogeneous polynomial system ( = 2, r = [1, 3]>)

⌃ : ẋ
1

= �x3
1

+ x
2

, ẋ
2

= �x5
1

,

Weak Lyapunov function [Bacciotti & Rosier, 2005]

V (x) = 1

6

x6
1

+ 1

2

x2
2

, V̇ = �x8
1

,

Theorem [Sanchez, 2016]

For ⌃, there is no strict LF in the class of homogeneous
polynomials of any degree m for any weights r.

Strict Lyapunov function for ⌃

V (x) = ↵
1

x6
1

� ↵
12

x
1

dx
2

c 5

3 + ↵
2

x2
2

, (GF!)
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GF systems: HOSM

Twisting algorithm [Levant, 1993]

ẋ
1

= x
2

, ẋ
2

= �k
1

dx
1

c0 � k
2

dx
2

c0 ,

Super–Twisting algorithm [Levant, 1993]

ẋ
1

= �k
1

dx
1

c 1

2 + x
2

, ẋ
2

= �k
2

dx
1

c0 ,

CTA [Torres et al., 2013]

ẋ
1

= x
2

ẋ
2

= �k
1

dx
1

c 1

3 � k
2

dx
2

c 1

2 + x
3

ẋ
3

= �k
3

dx
1

c0 � k
4

dx
2

c0

d · c⇢ = sign(·)| · |⇢
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More GF systems

Continuous homogeneous systems (Finite time)

ẋ
1

= x
2

, ẋ
2

= �k
1

dx
1

c 1

2 � k
2

dx
2

c 2

3 ,  = �1 , r = [3, 2]>

Polynomial homogeneous systems

ẋ
1

= �x3
1

+ x
2

, ẋ
2

= �x5
1

,  = 2 , r = [1, 3]>

Linear systems

ẋ = Ax , x 2 Rn ,  = 0 , r = [1, . . . , 1]>
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GFs properties

Theorem
1 Sums of GFs (degree m, weights r) are GFs of degree m.

2 F
a

and F
b

GF of degree m
a

and m
b

, with weights r, F
a

F
b

is
a GF of degree m

a

+m
b

.

Theorem
1 A GF is di↵erentiable almost everywhere (coordinate

hyperplanes).

2 A continuous GF is di↵erentiable everywhere if its
exponents ⇢

i,j

6= 0 are such that

⇢
i,j

� 1 , if �
i

(x
i

, ⇢
i,j

) = dx
i

c⇢i,j
⇢
i,j

> 1 , if �
i

(x
i

, ⇢
i,j

) = |x
i

|⇢i,j , 8i, j .

3 Partial derivatives of a di↵erentiable GF are GFs.
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GFs properties

Corollary

ẋ = f(x), x 2 Rn, is a GF system of degree  with r.

V : Rn ! R is a GF of degree m with weights r.

) W (x) = �rV (x) · f(x) is GF of degree m̄ = m+ .

Structure for positive definiteness

V (x,↵) =
nX

i=1

↵

i

|x
i

|mri +
qX

j=1

↵̄

j

nY

i=1

�

i,j

(x
i

, ⇢

i,j

),

W (x, �) =
nX

i=1

�

i

|x
i

| m̄ri +
q̄X

j=1

�̄

j

nY

i=1

�̄

i,j

(x
i

, ⇢̄

i,j

) ,
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Polynomial characterization

Commensurable exponents: ⇢
i

/⇢
j

2 Q

Isomorphism: d� : P
n

! D
�

d�(y) = [�
1

yµ1

1

, . . . ,�
n

yµn
n

]>, µ
i

2 Q
>0

Hyperoctants: D
�

⇢ Rn. �
i

= sign(x
i

), x 2 D
�

P
n

= {z 2 Rn | z
i

> 0, i = 1, 2, . . . , n}.

Lemma
If f : Rn ! R is GF of degree m with weights r and rational
exponents, then there exist µ

i

2 Q
>0

such that every
fD� � d� : P

n

! R is a form.

Associated forms of a GF f

f(x) : {f
1

(y), . . . , f
2

n(y)} , f
i

: P̄
n

! R
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Polynomial characterization

Isomorphism:

y x
d1(y)

y y

y x

xx

d2(y)

d3(y) d4(y)

Lemma
A GF f : Rn ! R is positive definite if its associated forms are
positive definite.
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Example

GF

V (x) = |x
1

| 53 + x
1

x
2

+ |x
2

| 52 , m = 5 , r = [3, 2]>

Isomorphism

d�(z) = [�
1

z3
1

,�
2

z2
2

]>

V

�

= V � d� : P̄ ! R
D̄

1

= {x
1

� 0, x
2

� 0}, V
1

(z) = z5
1

+ z3
1

z2
2

+ z5
2

D̄
2

= {x
1

 0, x
2

� 0}, V
2

(z) = z5
1

� z3
1

z2
2

+ z5
2

D̄
3

= {x
1

 0, x
2

 0}, V
3

(z) = z5
1

+ z3
1

z2
2

+ z5
2

D̄
4

= {x
1

� 0, x
2

 0}, V
4

(z) = z5
1

� z3
1

z2
2

+ z5
2

V (x) : {V
1

(z), V
2

(z), V
3

(z), V
4

(z)}
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Pólya’s Theorem

Theorem (Pólya, 1928)

The (classic) Form F : P̄
n

\ {0} ! R, is positive if and only if
there exists p

0

2 N such that for all p � p
0

, the coe�cients of
the form

G(z) = (z
1

+ z
2

+ · · ·+ z
n

)pF (z), 8z 2 P̄
n

\ {0},

are positive.

Example

V (z) = ↵
1

z3
1

� ↵
2

z2
1

z
2

+ ↵
3

z3
2

, ↵
i

> 0 ,

G
p

(z) = (z
1

+ z
2

)p V (z) ,
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Pólya’s Theorem

p = 1

G
1

(z) = ↵
1

z4
1

+ (↵
1

� ↵
2

)z3
1

z
2

�↵
2

z2
1

z2
2

+ ↵
3

z
1

z3
2

+ ↵
3

z4
2

.

p = 2

G
2

(z) = ↵
1

z5
1

+ (2↵
1

� ↵
2

)z4
1

z
2

+ (↵
3

� ↵
2

)z2
1

z3
2

+(↵
1

� 2↵
2

)z3
1

z2
2

+ 2↵
3

z
1

z4
2

+ ↵
3

z5
2

.

Inequalities

↵
1

> 0, 2↵
1

� ↵
2

� 0, ↵
3

� ↵
2

� 0, ↵
1

� 2↵
2

� 0, ↵
3

> 0 ,
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Pólya’s Theorem

System of linear inequalities A
v

↵ � 0

A
v

=

2

4
1 0 0 2 0 1
0 1 0 �1 �1 �2
0 0 1 0 1 0

3

5
>

, ↵ = [↵
1

↵
2

↵
3

]> .

Polyhedral cone

C = {↵ 2 Rd : A↵ ⌫ 0}

Minkowski-Weyl

C = {↵ = B� : 0 � � 2 Rq} a1

a2

a3

A: Faces, B: Edges
Software: Skeleton [Zolotykh, 2012]
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SOS representation

Sum of Squares (SOS) representation: Hilbert’s 17th prob.

The (classic) Form F of degree 2q is positive semi-definite if

F (z) =
NX

i=1

(f
i

)2 .

Example

F (z) = z2
1

+ 2z
1

z
2

+ z2
2

= (z
1

+ z
2

)2 ,

Example

F (z) =z6
1

� 2z4
1

z
2

z
3

+ z2
1

z4
2

+ z2
1

z2
2

z2
3

� 2z
1

z2
2

z3
3

+ z6
3

=(z3
1

� z
1

z
2

z
3

)2 + (z3
3

� z
1

z2
2

)2 .
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SOS representation

SOS-Quadratic form [Choi et al., 1995]

F (z) : SOS () F (z) = y(z)TPy(z) ,

F = F (z;↵) , LMI problem: P (↵) � 0

Software: SOSTOOLS [Prajna et al., 2002-2005] .

Positive definiteness

F̄ (z) = F (z)� ✏

nX

i=1

zm
i

, ✏ 2 R
>0
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Positive definite GFs

Let F = F (x;↵) be a GF and {F
i

} its associated forms

Pólya’s Theorem

G
p

(z;↵) = (z
1

+ z
2

+ · · ·+ z
n

)pF
i

(z;↵) ,

Linear inequalities: A
i

↵ � 0 ,

SOS representation

F̄
i

(z;↵) = F
i

(z;↵)� ✏

nX

i=1

zm
i

, ✏ 2 R
>0

LMIs: P
i

(↵) � 0 .

Adequate isomorphism.
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Comments

Pólya

Necessary and Su�cient condition for positive
definiteness

Leads to Linear Inequalities (not LMIs)

The complete solution for a given power p can be
completely characterized

Available Software (e.g., Skeleton)

SOS

A Su�cient condition for positive definiteness

Leads to LMIs

Available Software (e.g., SOSTOOLS)

Allows to include objective functions (optimization)
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GF Lyapunov function

GF system:

ẋ = f(x; k)

GF LF
candidate:

V (x;↵)

Derivative:

W (x;�) ,

Associated forms

{V
i

(z;↵), W
i

(z;�)}

� bilinear

� = �(↵, k) , � = M(k)↵ , � = M̄(↵)k
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Algorithm. I

Given a GF system ẋ = f(x; k) of degree  with weights r,

Step 1 Chose some terms �
ij

(x
i

, ⇢
i

) in

V (x,↵) =
nX

i=1

↵
i

|x
i

|mri +
qX

j=1

↵̄
j

nY

i=1

�
i,j

(x
i

, ⇢
i,j

)

Step 2 Take the derivative of V along the trajectories of
the system and obtain

W (x,�) =
nX

i=1

�
i

|x
i

| m̄ri +
q̄X

j=1

�̄
j

nY

i=1

�̄
i,j

(x
i

, ⇢̄
i,j

)
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Algorithm. II

Step 3 Considering

Homogeneity:
P

n

i=1

r
i

⇢
i,j

= m

Di↵erentiability:

8
<

:

m > max
i

{r
i

}
⇢
i,j

� 1 , for �
i

(x
i

, ⇢
i,j

) = dx
i

c⇢i,j
⇢
i,j

> 1 , for �
i

(x
i

, ⇢
i,j

) = |x
i

|⇢i,j

restrict the exponents ⇢
i,j

and the signs of ↵̄
j

such
that the coe�cients �

i

can be strictly positive. If
not, go back to Step 1 and increase q or change
�
ij

(x
i

, ⇢
i

).

Step 4 Set m and ⇢
i,j

.

Step 5 Chose µ
i

in: d�(y) = [�
1

yµ1

1

, . . . ,�
n

yµn
n

]>

Lyapunov SMC Jaime A. Moreno UNAM 188



Algorithm. III

Step 6 Compute the associated forms

{V
1

, . . . , V
2

n} , {W
1

, . . . ,W
2

n}
Step 7 Find ↵ and k for positive definiteness of V

i

, W
i

Solving Pólya’s inequalities
Finding SOS representation

Bilinear problem!
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Analysis (k given):

Pólya’s procedure

{A
Vi↵ � 0, A

Wi� � 0} , � = M(k)↵

Solve for ↵ the system of linear inequalities:

{A
Vi↵ � 0, A

WiM(k)↵ � 0}

SOS procedure

Define the forms:

V̄
j

(y) = V
j

(y)� ✏
nX

i=1

y�
i

, W̄
j

(y) = W
j

(y)� ✏
nX

i=1

y
¯

�

i

,

�, �̄, degrees of V
i

, W
i

. Solve for ↵ the system of LMIs:

{P
¯

Vi
(↵) � 0, P

¯

Wi
(↵) � 0}
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Design:

Pólya’s procedure

{A
Vi↵ � 0, A

Wi� � 0} , � = M̄(↵)k

Solve for ↵ the system {A
Vi↵ � 0} and choose an ↵⇤

Solve for k the system {A
WiM̄(↵⇤)k � 0}

SOS procedure

{P
¯

Vi
(↵) � 0, P

¯

Wi
(↵, k) � 0}

Solve for ↵ the LMIs {P
¯

Vi
(↵) � 0} and choose an ↵⇤

Solve for k the LMIs {P
¯

Wi
(↵⇤, k) � 0}
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Super–Twisting I

Super–Twisting algorithm [Levant, 1993]

ẋ
1

= �k
1

dx
1

c 1

2 + x
2

, ẋ
2

= �k
2

dx
1

c0 ,

Homogeneous of degree  = �1 with weights r = [2, 1]>.

Lyapunov function candidate

V (x) = ↵
1

|x
1

|m2 + ↵̄
2

dx
1

c⇢1 dx
2

c⇢2 + ↵
3

|x
2

|m.

Homogeneity ⇢
2

= m� 2⇢
1

.
Necessary conditions for positive definiteness: ↵

1

,↵
3

> 0.
Di↵erentiability: m > 2, ⇢

1

� 1 and ⇢
2

= m� 2⇢
1

� 1.

Choosing m = 3

V (x) = ↵
1

|x
1

| 32 + ↵̄
2

dx
1

c⇢1 dx
2

c3�2⇢

1 + ↵
3

|x
2

|3.
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Super–Twisting II

V̇ = �W (x)

W (x) =3↵

1

k

1

2

|x
1

|� 3↵

1

2

dx
1

c 1

2 x
2

+ 3↵
3

k
2

dx
2

c2 dx
1

c0+
↵̄
2

k
2

(3� 2⇢
1

)|x
1

|⇢1 |x
2

|2�2⇢

1 + ↵̄
2

k
2

⇢
1

dx
1

c⇢1� 1

2 dx
2

c3�2⇢

1

�↵̄
2

⇢
1

|x
1

|⇢1�1|x
2

|2�2⇢

1 .

⇢
1

= 1 and �↵̄
2

= ↵
2

> 0.

LF Candidate

V (x) = ↵
1

|x
1

| 32 � ↵
2

x
1

x
2

+ ↵
3

|x
2

|3 ,

W (x) = �
1

|x
1

|� �
2

dx
1

c 1

2 x
2

+ �
3

|x
2

|2 + �
4

dx
1

c0 |x
2

|2 ,
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Super–Twisting III

Coe�cients of the Derivative

�
1

= 3

2

↵
1

k
1

� ↵
2

k
2

, �
2

= 3

2

↵
1

+ ↵
2

k
1

, �
3

= ↵
2

, �
4

= 3↵
3

k
2

Note: �
i

is linear in ↵
j

and linear in k
j

but not in both.

LF conditions
Find ↵

i

, k
i

so that V > 0 and W > 0.

Isomorphism

d�(z) = [�
1

z2
1

,�
2

z
2

]>
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Super–Twisting IV

V

�

= V � d� : P̄ ! R
D̄

1

= {x
1

� 0, x
2

� 0}, V
1

(z) = ↵
1

z3
1

� ↵
2

z2
1

z
2

+ ↵
3

z2
2

D̄
2

= {x
1

 0, x
2

� 0}, V
2

(z) = ↵
1

z3
1

+ ↵
2

z2
1

z
2

+ ↵
3

z2
2

D̄
3

= {x
1

 0, x
2

 0}, V
3

(z) = ↵
1

z3
1

+ ↵
2

z2
1

z
2

+ ↵
3

z2
2

D̄
4

= {x
1

� 0, x
2

 0}, V
4

(z) = ↵
1

z3
1

� ↵
2

z2
1

z
2

+ ↵
3

z2
2

W

�

= W � d� : P̄ ! R
D̄

1

= {x
1

� 0, x
2

� 0}, W
1

(z) = �
1

z2
1

� �
2

z
1

z
2

+(�
3

+ �
4

)z2
2

D̄
2

= {x
1

 0, x
2

� 0}, W
2

(z) = �
1

z2
1

+ �
2

z
1

z
2

+(�
3

� �
4

)z2
2

D̄
3

= {x
1

 0, x
2

 0}, W
3

(z) = �
1

z2
1

+ �
2

z
1

z
2

+(�
3

� �
4

)z2
2

D̄
4

= {x
1

� 0, x
2

 0}, W
4

(z) = �
1

z2
1

� �
2

z
1

z
2

+(�
3

+ �
4

)z2
2
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Super–Twisting V

{x
1

x

2

< 0}: z
1

� 0, z
2

� 0

V (z) = ↵
1

z3
1

+ ↵
2

z2
1

z
2

+ ↵
3

z3
2

,

W (z) = �
1

z2
1

+ �
2

z
1

z
2

+ (�
3

� �
4

)z2
2

.

�
3

> �
4

.

{x
1

x

2

� 0}: z
1

� 0, z
2

� 0

V (z) = ↵
1

z3
1

� ↵
2

z2
1

z
2

+ ↵
3

z3
2

,

W (z) = �
1

z2
1

� �
2

z
1

z
2

+ (�
3

+ �
4

)z2
2

.

Just these forms must be analysed!
(V was analysed in the example of Pólya’s theorem)
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Super-Twisting, Pólya’s procedure

Fix ↵ = [2.1, 1, 1.1]>,

G
2

(z) = (z
1

+ z
2

)pW (z) ) A
w

� � 0 ,

Double description

A
w

M(↵)[1 k>]> > 0 , k = B
w

� ,

� 2 Rq, �
i

> 0,
P

q

i=1

�
i

= 1, q is the number of columns of B
w

.

Solution for p = 6B
w

=


3.788 2.325 3.019
0.303 0.303 0.257

�
,

For example, with � = (1/3)[1, 1, 1]>

k
1

= 3.04, k
2

= 0.28
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Super-Twisting, SOS procedure I

Change of variables: z
1

> 0, z
2

> 0, y
1

, y

2

2 R

(z
1

, z
2

) 7! (y2
1

, y2
2

).

Classical Forms of even degree: y 2 R2

V (y) = ↵
1

y6
1

� ↵
2

y4
1

y2
2

+ ↵
3

y6
2

,

W (y) = �
1

y4
1

� �
2

y2
1

y2
2

+ (�
3

+ �
4

)y4
2

.

SOS ) LMI [Parrilo, 2000]

V̄ (y) = V (y)� ✏(y6
1

+ y6
2

) > 0 , ✏ > 0 .

V̄ (y) =  T (y)Q
v

 (y) ,  (y) = [y3
1

, y2
1

y
2

, y
1

y2
2

, y3
2

]T .
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Super-Twisting, SOS procedure II

Q
v

=

2

664

↵̄
1

0 ��
1

0
0 2�

1

↵
1

↵
0

� ↵
2

0 ��
2

��
1

0 ↵
0

� 2�
2

↵
2

↵̄
3

0
0 ��

2

0 ↵̄
3

3

775 > 0 .
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HOSM Di↵erentiator

f(t) = f
0

(t) + ⌫(t),
���f (n)

0

(t)
���  L

Levant’s Di↵erentiator

ẋ
i

= �k
i

dx
1

� fcn�i
n + x

i+1

, i = 1, · · · , n� 1

ẋ
n

= �k
n

dx
1

� fc0 .

Dynamics of the Di↵erentiation error: z
i

= xi�f

(i�1)

0

ki�1

ż
i

= �k̃
i

⇣
dz

1

+ ⌫cn�i
n � z

i+1

⌘
, k̃

i

=
k
i

k
i�1

,

ż
n

= �k̃
n

dz
1

+ ⌫c0 � f
(n)

0

(t)

k
n�1

.

Homogeneous: degree d = �1, weights r = (n, n� 1, · · · , 1).
Lyapunov SMC Jaime A. Moreno UNAM 202



Generalized Form as Lyapunov Function

LF: for p � 2n� 1 and any �

i

> 0

V (z) =
n�1X

j=1

�
j

Z
j

(z
j

, z
j+1

) + �
n

1

p
|z

n

|p , �
i

> 0

Z
i

(z
i

, z
i+1

) = n+1�i
p |z

i

| p
n+1�i +

� z
i

dz
i+1

c p�n�1+i
n�i +

⇣
p�n�1+i

p

⌘ |z
i+1

| p
n�i .

Convergence Time Estimation

V̇  �V (z)
p�1

p , > 0

T (z
0

)  p


V

1

p (z
0

) .
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Gains calculation by SOS

Gain Calculation using SOS and p = 2n� 1

n k

1

k

2

k

3

k

4

L

2 2.12 1.02 – – 1
3 3.01 4.95 1.03 – 1
4 5.81 17.75 15.45 1.02 1
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Summary

Pros
Provides a computable way to calculate LFs for a fairly
general class of homogeneous systems.

It can be extended to non homogeneous systems.

The algebraic problem to solve is a system of linear
inequalities (Pólya) or an LMI (SOS). It is linear in the
coe�cients of the LF candidate and in the gains.

Cons
Restricted to ”polynomial” systems

Course of high p for Pólya and SOS.
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Part V

Continuous HOSM Controllers
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Discontinuous HOSM Controller

Perturbed second-order plant

ẋ
1

= x
2

ẋ
2

= u+ µ (t) ,

Discontinuous controller (SOSM), e.g. Twisting controller,
rejects bounded perturbation,

strong chattering,

Precision
|x

1

|  ⌫
1

⌧2, |x
2

|  ⌫
2

⌧ .

Chattering reduction requires continuous control signal.
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Chattering Attenuation: Standard

ẋ
1

= x
2

ẋ
2

= x
3

, u+ µ (t)

ẋ
3

= u̇+ µ̇ (t)

u̇ = k
3

#
2

(x
1

, x
2

, x
3

)

Properties

Levant 2003

Continuous control signal u(t) ) chattering attenuation

Rejects Lipschitz continuous (possibly unbounded)
perturbation,

Precision |x
1

|  ⌫
1

⌧3, |x
2

|  ⌫
2

⌧2, |x
3

|  ⌫
3

⌧

Drawback: It requires (x
1

, x
2

) and ẋ
2

!
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Preview: Relative degree r = 1, the
Super-Twisting

System:
ẋ
1

= u+ ⇢(x, t)

Discontinuous Control:

u = �k sign(x
1

)

Discontinuous Integral Control (Super-Twisting):

u = �k
1

|x
1

| 12 sign(x
1

) + z
ż = �k

2

sign(x
1

)

Closed Loop System:

ẋ
1

= �k
1

|x
1

| 12 sign(x
1

) + x
2

ẋ
2

= �k
2

sign(x
1

) + ⇢̇(x, t)
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ẋ
1

= u+ ⇢(x, t)

Discontinuous Control:

u = �k sign(x
1

)

Discontinuous Integral Control (Super-Twisting):

u = �k
1

|x
1

| 12 sign(x
1

) + z
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Figure : State Trajectory with ⇢(t) = 0.5 sin(t) + 0.25 sin(2t)

Robust stabilization in finite time
Continuous control signal
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Continuous Terminal Sliding Mode
Controller

u = �k
1

L
2

3 d�
L

(x
1

, x
2

)c 1

3 + z
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Properties

Kamal, Moreno, Chalanga, Bandyopadhyay, Fridman
(2016).

Continuous control signal u(t) ) chattering attenuation

It rejects Lipschitz continuous (possibly unbounded)
perturbation,

Precision

|x
1

|  ⌫
1

⌧3, |x
2

|  ⌫
2

⌧2, |x
3

|  ⌫
3

⌧

Advantage: It only requires (x
1

, x
2

) and not ẋ
2

!

Estimation of the perturbation: z(t) ! µ(t).
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Gain calculation by function maximization

Set 1 2 3 4

k
1

4.4 4.5 7.5 16
k
2

2.5 2 2 7
↵ 20 28.7 7.7 1
� 1 1 1 1

Table : Sets of gain values obtained by maximization for L = 1.
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Phaseportrait: Sliding-like behavior
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Phaseportrait: Twisting-like behavior
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Continuous Twisting Algorithm
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Properties

Torres, Sanchez, Fridman, Moreno (2015), [25]

Continuous control signal u(t) ) chattering attenuation

It rejects Lipschitz continuous (possibly unbounded)
perturbation,

Precision

|x
1

|  ⌫
1

⌧3, |x
2

|  ⌫
2

⌧2, |x
3

|  ⌫
3

⌧

Advantage: It only requires (x
1

, x
2

) and not ẋ
2

!

Estimation of the perturbation: z(t) ! µ(t).

Gain calculation using Polya’s Theorem.

Convergence Time estimation

T
c

 5

�
V

1

5 (x(0)) ,
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Virtues of Continuous HOSM

Continuous control signal ) chattering attenuation.

Extension to arbitrary order

ẋ
i

= x
i+1

, i = 1, ..., ⇢� 1,

ẋ
⇢

= �k
1

� (x) + z + µ (t)

ż = �k
2

d� (x)c0

Rejects Lipschitz (possibly unbounded) continuous
perturbations versus bounded perturbations of HOSM.

Requires only x and not ẋ
⇢

.

Lyapunov approach also extended for arbitrary order
systems.

Interesting approach from (Chitour, Harmouche,
Laghrouche).
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Continuous Integral Controller (PID)

System

ẋ
1

= x
2

ẋ
2

= u+ ⇢ (t) ,

PID-Controller (e.g. linear)

u = �k
1

(x
1

, x
2

) + k
I

(x
3

)

ẋ
3

= �k
2

(x
1

, x
2

) ,

k
1,2

(x
1

, x
2

) continuous, k
I

(x
3

) continuous/discontinuous.

Constant perturbations/references ) Asymptotic
convergence and insensitive to perturbation!

Arbitrary perturbations/ref ) Practical convergence.

Estimation of ⇢(t) is not required for implementation.

More general: Internal Model Principle based controller.
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ẋ
3

= �k
2

(x
1

, x
2

) ,

k
1,2

(x
1

, x
2

) continuous, k
I

(x
3

) continuous/discontinuous.

Constant perturbations/references ) Asymptotic
convergence and insensitive to perturbation!

Arbitrary perturbations/ref ) Practical convergence.

Estimation of ⇢(t) is not required for implementation.

More general: Internal Model Principle based controller.

Lyapunov SMC Jaime A. Moreno UNAM 227



Continuous Integral Controller (PID)

System

ẋ
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ẋ
2

= u+ ⇢ (t) ,

PID-Controller (e.g. linear)

u = �k
1

(x
1

, x
2

) + k
I

(x
3

)

ẋ
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Proposed Solution

Combine Integral Action and Discontinuous Control.

k
1

(x
1

, x
2

) and k
I

(x
3

) continuous, k
2

(x
1

, x
2

) discontinuous.

Insensitive to any Lipschitz perturbation (i.e. with
bounded derivative).

No estimation of the perturbation ⇢(t) required for
implementation.

Continuous control signal ) Chattering reduction.

For simplicity (!?) we add Homogeneity.
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Continuous and Homogeneous State
Feedback Controller

u = �k
1

dx
1

c 1

3 � k
2

dx
2

c 1

2

Closed Loop System:

ẋ
1

= x
2

ẋ
2

= �k
1

dx
1

c 1

3 � k
2

dx
2

c 1

2 + ⇢ (t) ,

Lyapunov Function:

V (x
1

, x
2

, x
3

) = �
1

|x
1

| 53 + �
12

x
1

x
2

+ |x
2

| 52 ,

Sensitive to perturbations.
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Homogeneous Integral + State Feedback
Controller

Discontinuous Integral Controller (k
1

, k
2

, k
3

> 0, k
4

2 R)
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dx
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Homogeneous Integral + State Feedback
Controller

Discontinuous Integral Controller (k
1

, k
2

, k
3

> 0, k
4

2 R, L > 0)
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3 dx
1

c 1

3 � k
2

L
1

2 dx
2

c 1

2 + z
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Closed Loop System:
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L > 0 scaling gain:
If ⇢(t) = 0: Stability for L = 1 ) Stability for any L > 0.
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Remarks

In contrast to the continuous Integral Controller:
It tracks exactly, in finite time and robustly
arbitrary references with bounded r̈(t)
despite arbitrary (time) Lipschitz
perturbations/uncertainties, i.e. k⇢̇(t)k  �, � constant
without an Internal Model.

For implementation: r(t) and ṙ(t) are required but not r̈(t).
Define x

3

= z + ⇢. After convergence ) x(t) = 0 )
z(t) = �⇢(t): Integral action estimates the perturbation!
Control signal is continuous ) Chattering attenuation.
Gain selection:

Set k1, k2 so that state feedback stable and well-behaved
without perturbation.
Select k4 = 0, k4 > 0, k4 < 0.
Select k3 small to assure stability.
Select L su�ciently large to compensate the
perturbations/uncertainties.
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Related controllers

A similar algorithm is the ”Continuous Twisting
Algorithm”.The proof is based on a Generalized Forms
technique.

u = �k
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dx
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3 � k
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dx
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ż = �k
3

l
x
2

+ k
2

dx
1

c 2

3

k
0

Lyapunov SMC Jaime A. Moreno UNAM 235



Outline

23 Continuous HOSM Controllers

24 Motivation

25 Preview: Relative degree r = 1: Super-Twisting

26 r = 2 Continuous Terminal Sliding Mode Controller

27 r = 2 Continuous Twisting Controller

28 Continuous Integral Controller (PID)

29 Discontinuous Integral Controller: State Feedback
The I-Controller
Lyapunov Function
Caveat: Lack of Homogeneity

30 Discontinuous Integral Controller: Output Feedback

31 Conclusions

32 General Conclusions and Open Problems

Lyapunov SMC Jaime A. Moreno UNAM 236



Homogeneous and smooth Lyapunov
Function

Homogeneous and smooth Lyapunov Function (L = 1)
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The Lyapunov function fulfills following di↵erential
inequality

V̇ (x)  �V 4

5 (x) ,

for some  > 0 depending on the gains and �.

It implies robust finite time stability.

Convergence time estimation:

T (x
0

)  5


V

1

5 (x
0

) .

Lyapunov SMC Jaime A. Moreno UNAM 238



The Lyapunov function fulfills following di↵erential
inequality

V̇ (x)  �V 4

5 (x) ,

for some  > 0 depending on the gains and �.

It implies robust finite time stability.

Convergence time estimation:

T (x
0

)  5


V

1

5 (x
0

) .

Lyapunov SMC Jaime A. Moreno UNAM 238



The Lyapunov function fulfills following di↵erential
inequality

V̇ (x)  �V 4

5 (x) ,

for some  > 0 depending on the gains and �.

It implies robust finite time stability.

Convergence time estimation:

T (x
0

)  5


V

1

5 (x
0

) .

Lyapunov SMC Jaime A. Moreno UNAM 238



Outline

23 Continuous HOSM Controllers

24 Motivation

25 Preview: Relative degree r = 1: Super-Twisting

26 r = 2 Continuous Terminal Sliding Mode Controller

27 r = 2 Continuous Twisting Controller

28 Continuous Integral Controller (PID)

29 Discontinuous Integral Controller: State Feedback
The I-Controller
Lyapunov Function
Caveat: Lack of Homogeneity

30 Discontinuous Integral Controller: Output Feedback

31 Conclusions

32 General Conclusions and Open Problems

Lyapunov SMC Jaime A. Moreno UNAM 239



Caveat

Alternative Integral + state feedback controllers:

Linear Integral + state feedback controller (Homogeneous)
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Controller without perturbation
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Remarks

Linear stabilizes exponentially and is not insensitive to
perturbation

Linear + Discontinuous Integrator causes oscillations
(Harmonic Balance). This is structural and for any n > 2.
Eliminated by Homogeneity.

Extended ST: Convergence in finite time and insensitive to
perturbations.
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Homogeneous Output Feedback Controller

Homogeneous State Feedback Controller + Homogeneous
Observer
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Simulations

We have implemented three controllers:

A State Feedback (SF) controller with discontinuous
integral term, with gains k

1

= 2, k
2

= 5, k
3

= 0.5, k
4

= 0,
and initial value of the integrator z (0) = 0.

An Output Feedback (OF) controller with discontinuous

integral term, with controller gains k
1

= 2�
2

3 , k
2

= 5�
1

2 ,
k
3

= 0.5�, k
4

= 0, � = 3, observer gains l
1

= 2L,
l
2

= 1.1L2, L = 4, observer initial conditions x̂
1

(0) = 0,
x̂
2

(0) = 0, and initial value of the integrator z (0) = 0.

A Twisting controller, given by u = �k
1

dx
1

c0 � k
2

dx
2

c0,
with gains k

1

= 1.2, k
2

= 0.6.

Perturbation ⇢ (t) = 0.4 sin (t)
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Simulations
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Simulations
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Conclusions

The Discontinuous Integral Controller
tracks exactly, in finite time and robustly
arbitrary references with bounded r̈(t)
despite arbitrary (time) Lipschitz
perturbations/uncertainties, i.e. k⇢̇(t)k  �, � constant
without an Internal Model.

Separate design of State Feedback and Observer;

Neither continuous Observer nor continuous State
Feedback Controller are insensitive to perturbations;

Insensitivity against perturbations is achieved by
discontinuous Integral Control;

For implementation: r(t) is required but not ṙ(t) and r̈(t).

Design is Lyapunov-Based.

Generalization to arbitrary order possible.
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Conclusions

1 Development of a Lyapunov based approach to HOSM and
homogeneous control is an important task.

2 We require constructive methods to e�ciently design controllers
and observers for this class of systems.

3 We have provided some possible approaches. Each has its
strengths and its weaknesses.

4 Still a lot of work has to be done

5 Other interesting approaches: Implicite Lyapunov Functions
(ILF) by Lille Group!
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Open Problems

1 Gain (and Structure) Design for Performance.

2 Performance comparison of HOSM Controllers with other
controllers (e.g. FOSM).

3 Is there a family of LF for HOSM providing necessary and
su�cient stability conditions ? Towards a more systematic
Lyapunov Design.

4 (Truly) multivariable HOSM controllers and Observers.
Some results for ST from Ch. Edwards,...

5 Adaptive Algorithms. Important results from Y. Shtessel,
F. Plestan, ...

6 Parameter estimation...

7 Implementation of HOSMs, Discretization methods,...
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Thank you! Gracias!
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